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Abstract
Drugs intended to target mammalian cells can have broad off-target effects on the 
human gut microbiota with potential downstream consequences for drug efficacy 
and side effect profiles. Yet, despite a rich literature on antibiotic resistance, we still 
know very little about the mechanisms through which commensal bacteria evade 
non-antibiotic drugs. Here, we focus on statins, one of the most prescribed drug types 
in the world and an essential tool in the prevention and treatment of high circulating 
cholesterol levels. Prior work in humans, mice, and cell culture support an off-target 
effect of statins on human gut bacteria; however, the genetic determinants of statin 
sensitivity remain unknown. We confirmed that simvastatin inhibits the growth of 
diverse human gut bacterial strains grown in communities and in pure cultures. Drug 
sensitivity varied between phyla and was dose-dependent. We selected two repre-
sentative simvastatin-sensitive species for more in-depth analysis: Eggerthella lenta 
(phylum: Actinobacteriota) and Bacteroides thetaiotaomicron (phylum: Bacteroidota). 
Transcriptomics revealed that both bacterial species upregulate genes in response to 
simvastatin that alter the cell membrane, including fatty acid biogenesis (E. lenta) and 
drug efflux systems (B. thetaiotaomicron). Transposon mutagenesis identified a key 
efflux system in B. thetaiotaomicron that enables growth in the presence of statins. 
Taken together, these results emphasize the importance of the bacterial cell mem-
brane in countering the off-target effects of host-targeted drugs. Continued mecha-
nistic dissection of the various mechanisms through which the human gut microbiota 
evades drugs will be essential to understand and predict the effects of drug admin-
istration in human cohorts and the potential downstream consequences for health 
and disease.
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1  |  INTRODUC TION

Population-level surveys of the human gut microbiota have revealed 
that pharmaceuticals are the top predictor of inter-individual vari-
ations in gut microbial community structure (Falony et al.,  2016; 
Zhernakova et al.,  2016. Surprisingly, this association extends be-
yond drugs for infectious disease to drugs used in a wide range of 
noncommunicable diseases, including cancer (Spanogiannopoulos 
et al., 2022), rheumatoid arthritis (Nayak et al., 2021), and cardiovas-
cular disease (Falony et al., 2016; Vieira-Silva et al., 2020. The off-
target of statins on the gut microbiota is of particular interest due to 
the ubiquity of the use of these drugs in patients and the existence 
of rare but potentially severe adverse effects, including muscle dam-
age and diabetes (Golomb & Evans, 2008).

Studies in humans, mice, and cell culture support a robust 
and clinically relevant interaction between statins and the gut 
microbiota. Early work in humans demonstrated that bile acid 
metabolites produced by the gut microbiome are positively asso-
ciated with statin bioavailability and efficacy (Kaddurah-Daouk 
et al.,  2011), consistent with a recent metagenomic sequencing 
study demonstrating that the gut microbiome is associated with 
both statin efficacy and toxicity (Wilmanski et al., 2022). Statins 
may also have a broader beneficial effect on the gut microbi-
ota, for example, by decreasing the risk of obesity (Vieira-Silva 
et al., 2020). While gold-standard data from double-blinded lon-
gitudinal randomized controlled trials remain lacking, experiments 
in mouse models support a direct causal effect of statins on the 
gut microbiota (Caparrós-Martín et al.,  2017; Catry et al.,  2015; 
Cheng et al., 2021; Xu et al., 2022; Zhang et al., 2021) and even a 
potential role of the gut microbiota in contributing to their lipid-
lowering effects (He et al., 2017). Furthermore, a screen of human 
gut bacterial isolates suggested that statins can directly inhibit the 
growth of gut bacteria (Maier et al., 2018).

However, despite the extensive literature supporting an import-
ant interaction between statins and the gut microbiome, multiple 
key questions remain. The bacterial targets of statins remains a mys-
tery, given that their canonical target, 3-hydroxy-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase, is rarely found in the human 
gut microbiome (Gill et al., 2006). The one prior in vitro study (Maier 
et al., 2018) only evaluated a single dose of statins in mono-culture; 
thus, the minimal inhibitory concentration (MIC) and relevance of 
the observed growth inhibition to microbial communities remain un-
clear. Furthermore, although growth inhibition is a valuable starting 
point, far more work is needed to assess the impact of statins on 
bacterial physiology, gene expression, and metabolic activity. And 
perhaps most importantly, prior to this study we lacked any insight 
into the genes and gene products that contribute to bacterial sen-
sitivity to statins or if these mechanisms were shared across phyla.

To address these major knowledge gaps, we conducted an in-
depth analysis of the interactions of a single representative statin 
(simvastatin) and the human gut microbiota. Simvastatin was se-
lected due to its clinical relevance and clear evidence for microbi-
ota interactions in humans (Kaddurah-Daouk et al., 2011), mice (He 
et al., 2017; Xu et al., 2022), and cell culture (Maier et al., 2018). As 
expected, we found that simvastatin has dose-dependent effects 
on bacterial growth across phyla. Further, we used a combination of 
transcriptomics and transposon mutagenesis to identify pathways in 
representative strains from two bacterial phyla (one Gram-positive 
and one Gram-negative) that support bacterial growth in the pres-
ence of statins. These results emphasize the parallels between path-
ways for resistance to antibiotics and host-targeted drugs (Maier 
et al., 2018) while providing an experimental and conceptual frame-
work to dissect the impact of a broader range of statins or other 
drugs on human gut bacteria.

2  |  MATERIAL S AND METHODS

2.1  |  Media, strains, drugs used

BHICHAV: Bacto Brain Heart Infusion (BD Biosciences, 37 g/L) sup-
plemented with L-cysteine-HCl (0.05%, w/v), hemin (5 μg/mL), 
L-arginine (1.0%, w/v), and vitamin K (1 μg/mL). BHICHV: Bacto 
Brain Heart Infusion (BD Biosciences, 37 g/L) supplemented with  
L-cysteine-HCl (0.05%, w/v), hemin (5 μg/mL), and vitamin K (1 μg/mL).  
Simvastatin: Toronto chemicals S485000. DMSO (anhydrous, 
≥99.9%): Sigma-Aldrich Sure/Seal 276855. MeOH (anhydrous, 
≥99.9%): Sigma-Aldrich Sure/Seal 294829.

2.2  |  Ex vivo incubations of human stool samples

Stool from four human donors (Table S1), previously frozen at −80°C 
upon collection, was aliquoted into a pre-equilibrated cryovial, weighed, 
diluted in reduced BHICHV at 10 mL per 1 gram of stool (0.1 g/mL),  
and vortexed to homogenize. Each sample was allowed to settle for 
5 min and 100 μL of the sediment-free supernatant aliquoted into a 
new pre-equilibrated cryovial. Growth was evaluated by inoculating 
sterile BHICHV with 1:10 dilution of this fecal slurry, with OD600 read-
ings performed every 15 min for 48 h with a 1-min shake prior to each 
absorbance reading at 37°C using an Eon Microplate Spectrophotom-
eter (Biotek Instruments, Inc.). Simvastatin dilutions were made from 
a freshly prepared base stock of 2.5 mg/mL in DMSO. Samples were 
treated with either simvastatin (25 and 12 μg/mL) or an equal volume 
of 4% DMSO in a final volume of 100 μL prior to placing in the plate 
reader. Each donor's stool inoculation and treatment were evaluated 
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    |  3ESCALANTE et al.

in triplicate (3 replicates per treatment group, Table S2). Samples were 
collected at the experimental endpoint to perform 16S rRNA gene 
sequencing (16S-seq) and analysis. All work described above were 
carried out in an anaerobic COY chamber. Growth curves were aver-
aged by treatment and individual, and growth parameters (time to mid-
exponential, carrying capacity, and growth rate) were estimated using 
the Growthcurver package (Sprouffske and Wagner, 2016). ANOVA 
was used to determine changes in growth parameters between groups. 
The maximal intestinal concentration of simvastatin was calculated 
as previously described (Zou et al., 2020): 40 mg recommended daily 
dose (source: simvastatin package insert) divided by 250 mL. Distal gut 
levels were estimated based on isotope labeling experiments indicat-
ing that 60% of the administered dose is excreted in stool (Wishart 
et al., 2018) (DrugBank accession: DB00641).

2.3  |  16S-seq and analysis of ex vivo incubations 
with simvastatin

Bacterial pellets from the ex vivo incubations above (100 μL) were 
collected by centrifugation at 3000 rpm for 5 min and then stored at 
−80°C. DNA was extracted using a ZymoBIOMICS 96 MagBead DNA 
Kit (Zymo D4308) as per the manufacturer's protocol, and 16S rRNA 
amplicon library was constructed following a dual-indexing approach 
(Gohl et al., 2016). Samples underwent 16S rRNA gene amplification 
using GoLay-barcoded V4 region V4-515F and V4-806R primers (Gohl 
et al., 2016) on a BioRad CFX 384 real-time PCR instrument with four 
serial 10 fold dilutions of extracted DNA template. Individual sample 
dilutions in the exponential phase were manually selected for sub-
sequent indexing PCR using a dual GoLay index primers to add flow 
cell adaptors and indices as previously described (Gohl et al., 2016). 
DNA concentration was measured using a PicoGreen assay (P7589, 
Life Technologies) and samples were pooled at equimolar concentra-
tions. Pooled libraries were purified and concentrated with MinElute 
PCR Purification kit (Qiagen #28004), run on 1% gel, size-selected 
(~427 bp), and purified using MinElute Gel Extraction kits (Qiagen, 
#28604). Libraries were quantified (NEBNext Library Quantification 
Kit; New England Biolabs) and sequenced with a 600 cycle MiSeq Re-
agent Kit v3 (paired-end reads set up for 250-bp in length; Illumina 
MiSeq) with 15% PhiX spiked in before sequencing at the UCSF Center 
for Advanced Technology.

QIIME2 (Bolyen et al., 2019) was used to trim primer reads, de-
noise the data, and create a feature table using the following: qiime 
cutadapt trim-paired, qiime dada2 denoise-paired, and qiime feature-
classifier classify-sklearn as in our lab pipeline (https://github.com/
jbisa​nz/16Spi​pelin​es/blob/maste​r/QIIME2_pipel​ine.Rmd). 
Taxonomy was assigned using DADA2 (Callahan et al., 2016) with 
implementation of the RDP classifier (Wang et al., 2007) using the 
DADA2-formatted SILVA v128 training set. A phylogenetic tree 
was constructed using QIIME2 and the command phylogeny align-
to-tree-mafft-fasttree. QIIME2 artifacts were imported into R using 
the qiime2R package (https://github.com/jbisa​nz/qiime2R). Low 
abundance taxa present in less than 3 samples and with less than 

10 reads were filtered out. We assigned a unique ASV identifier that 
can be used to look up a full taxonomic assignment, from kingdom 
to species, associated with a sequence variant. Diversity metrics 
were generated using vegan (Dixon,  2003) and phyloseq (McMur-
die & Holmes,  2013) packages in R. Principal coordinates analysis 
(PCoA) or Principal components analysis (PCA) were performed with 
ape (Paradis et al., 2004) or vegan packages, respectively. Analyses 
were carried out using the centered log2-ratio (CLR) normalized 
taxonomic abudances Aclr = [log2(A1/ga), log2(A2/ga), … log2(An/ga)], 
where A is a vector of read counts with a prior of 0.5 added and ga 
is the geometric mean of all values of A. Taxa were merged at dif-
ferent taxonomic levels using tax_glom from the phyloseq package 
before being CLR transformed where applicable. PERMANOVA was 
employed to detect changes in community composition from rarified 
counts or Bray-Curtis distances. Differential abundant ASVs were 
determined by employing ALDEx2 (Fernandes et al.,  2013, 2014) 
using 150 simulations.

2.4  |  In vitro bacterial growth studies

The isolates used in this study are found in Table S3. 37/39 of the 
tested isolates are commonly found in the human gut microbiota. 
Each of these strains was obtained from the Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ) culture collection. 
A single colony of each isolate was subcultured in 5 mL of BHICHAV 
for 48 h in an anaerobic chamber (Coy Laboratory Products) at 37°C 
with an atmosphere composed of 2%–3% H2, 20% CO2, and the bal-
ance N2. This subculture was diluted down to an OD600 of 0.1, which 
was then further diluted 100-fold, and then used to inoculate a micr-
otiter plate with 2-fold serial dilutions of simvastatin concentrations 
ranging from 1.5625 to 100 μg/mL or a 4% DMSO/MeOH vehicle 
control in a final volume of 100 μL. DMSO was used as a vehicle con-
trol for most of the isolates, except for the isolates from the Actino-
bacteria phylum, which we found did not tolerate DMSO well and 
MeOH was used instead. Higher concentrations of simvastatin were 
not tested due to solubility limits in BHICHAV. Plates were incubated 
at 37°C for 48 h in the anaerobic chamber and growth assessed by 
a final OD600 measurement. The minimal inhibitory concentration 
(MIC) was measured as the lowest concentration of simvastatin re-
sulting in >90% growth inhibition after 48 h of incubation. Absorb-
ance of cultures in 96-well plates were read using an Eon Microplate 
Spectrophotometer (BioTek Instruments, Inc).

2.5  |  Tree construction

Full-length ribosomal sequences for each isolate were extracted 
from the database greengenes (DeSantis et al.,  2006). Sequences 
were imported into Unipro UGENE (Okonechnikov et al.,  2012) 
and aligned using MUSCLE (Edgar, 2004). Gaps occurring in >50% 
of sequences were removed and a maximum likelihood tree gener-
ated using PhyML (Guindon et al., 2010). For trees generated from 
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16S-seq from ex vivo samples, we used the ggtree R package (Yu 
et al., 2018).

2.6  |  Bacterial incubations for 
transcriptional profiling

Bacterial isolates E. lenta DSM 2243 and B. thetaiotaomicron DSM 
2079 were grown anaerobically in previously equilibrated BHICHAV 
at 37°C. Cultures for each isolate were grown to mid-exponential 
phase, split into triplicates, and incubated for 15 min at a range of 
simvastatin concentrations (1X, 0.5X, and 0.1X MIC; Table  S3) or 
vehicle. Following incubations, cultures were removed from the 
anaerobic chamber in sealed Falcon tubes and placed immediately 
on ice. Cultures were centrifuged at 3000 rpm for 5 min at 4°C, the 
supernatant removed, and the bacterial pellets flash-frozen in liquid 
nitrogen for future RNA extraction.

2.7  |  RNA extraction

Each bacterial pellet was incubated with 1 mL of Tri Reagent (Sigma 
Aldrich T9424) at room temperature for 10 min. The cell suspen-
sion was transferred into Lysing Matrix E tubes (MP Biomedicals, 
116914050) and homogenized in a bead-beater (Mini-Beadbeater-24, 
BioSpec) for 5 min at room temperature. The sample was incubated 
with 200 μL of chloroform at room temperature for 10 min, followed 
by centrifugation at 16,000 g for 15 min at 4°C. Next, 500 μL of the 
upper aqueous phase was transferred into a new tube and 500 μL 
of 100% ethanol was added. To isolate RNA, we used the PureLink 
RNA Mini Kit (Life Technologies, catalog #: 12183025). This mixture 
was transferred onto a PureLink spin column and spun at ≥12,000× g 
for 30 s. The column was washed with 350 μL of wash buffer I as 
described in the PureLink manual. The column was incubated with 
80 μL of PureLink DNase (Life Technologies, catalog #: 12185010) 
at room temperature for 15 min, and washed with 350 μL of wash 
buffer I. The column was washed with wash buffer II twice as de-
scribed in the PureLink manual. Total RNA was recovered in 50 μL 
of RNase-free water. A second round of DNAse treatment was 
undertaken. The RNA was incubated with 6 μL of TURBO DNAse  
(Ambion, ThermoFisher, catalog #: AM2238) at 37°C for 30 min. 
To stop the reaction, 56 μL of lysis buffer from the PureLink kit and 
56 μL of 100% ethanol was added to the sample and vortexed. This 
suspension was transferred onto a PureLink column and washed 
once with 350 μL of wash buffer I and twice with 500 μL of wash 
buffer II. The RNA was recovered in 30 μL of RNAse-free water.

2.8  |  rRNA depletion, library generation, and 
RNA sequencing

Total RNA was subjected to rRNA depletion using the RiboMi-
nus Bacteria Transcription Isolation kit (ThermoFisher, catalog  

# A47335), following the manufacturer's protocol. RNA fragmenta-
tion, cDNA synthesis, and library preparation proceeded using NEB-
Next Ultra RNA Library Prep Kit for Illumina (New England BioLabs, 
catalog # E7530) and NEBNext Multiplex Oligos for Illumina, Dual 
Index Primers (New England BioLabs, catalog # E7600), following 
the manufacturer's protocol. All samples were paired end sequenced 
(2 × 150 bp) using an Illumina NovaSeq platform (NovaSeq 6000 
v1.5) at the UCSF Institute for Human Genetics.

2.9  |  RNA sequencing analysis

Reads were trimmed using fastp (Chen et al., 2018). Reference ge-
nomes were obtained from NCBI's genome assembly database 
under the following accession numbers: ASM2426v1 for E. lenta and 
ASM1106v1 for B. thetaiotaomicron. Reads were mapped to refer-
ence genomes using Bowtie2 (Langmead & Salzberg, 2012) using the 
following options: q, –-met-file, –-end-to-end, –-sensitive. HTSeq (An-
ders et al., 2014) was used to count the number of transcripts map-
ping to genes using the following options: –-type = CDS, –-idattr:ID, 
–-stranded = no, –-minaqual = 10. Differential abundance of gene 
transcripts in the simvastatin treated (low, med, high) and untreated 
samples was assessed using DESeq2 (Love et al., 2014) (v1.26.0) with 
the DeSeqDataSetFromHTSeqCount and ddsHTSeq functions and 
their default options. Different FDR thresholds ranging from 0.01 to 
0.1 were used to determine the number of differentially expressed 
genes, and irrespective of the threshold used, consistent percentages 
of each bacterial genome were affected by simvastatin. Ultimately, a 
threshold of FDR < 0.1 and |log2 fold-change| > 1 was chosen to de-
termine significance. BlastKOALA (Kanehisa et al., 2016) was used 
to map protein sequences from each organism to KO terms using 
the “species_prokaryote” database. KEGG pathway enrichment was 
carried out using clusterProfiler (Yu et al., 2012) (v3.14.3) and the 
enrichKEGG function. KO terms for all differentially abundant bar-
codes (both up- and down-regulated with a padj < 0.1, DESeq2 and 
|log2 fold-change| > 1) were provided and the organism parameter 
was set to “ko”. Heatmaps and volcano plots were generated using 
the ggplot2 R package (Wickham, 2016) (v3.3.5).

2.10  |  In vitro transposon mutant fitness assays and 
barcode sequencing

We performed B. thetaiotaomicron transposon mutant fitness assays 
as described previously (Liu et al., 2021). For B. thetaiotaomicron, we 
thawed an aliquot of the full transposon mutant library, inoculated 
the entire aliquot into 50 mL of BHICHV supplemented with 10 μg/mL  
erythromycin, and grew the library to mid-log phase. We then col-
lected 6 cell pellets of ~1.0 OD600 unit each (the “Time0” sam-
ple). We used the remaining cells to inoculate competitive growth  
assays in the presence of simvastatin or a vehicle control. All fitness 
assays were performed in 1.2 mL of growth medium in a 24-well 
transparent microplate (Greiner) at a starting OD600 of 0.02. We 
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grew cultures until the vehicle group reached stationary phase and 
then collected cell pellets (the “Condition” sample). We extracted 
genomic DNA from the Time0 and Condition samples in a 96-well 
microplate format with a ZymoBIOMICS 96 MagBead DNA kit  
(ZymoResearch, catalog # D4302). We performed barcode sequenc-
ing (BarSeq) as previously described (Liu et al., 2021; Price et al., 2018). 
We used BarSeq oligos with both P1 and P2 indexed to minimize the 
impact of incorrectly assigned indexes in Illumina HiSeq4000 runs 
(Sinha et al., 2017). Strain and gene fitness scores were calculated as 
previously described and can be found within the Fitness Browser 
(https://fit.genom​ics.lbl.gov) (Wetmore et al.,  2015). Fitness values 
are log2 ratios that describe the change in abundance of mutants in 
that gene during the experiment. For most of the fitness experiments, 
which are growth experiments, the change reflects how well the mu-
tants grow relative to the “Time0” samples. The “Time0” samples also 
serve as a control to ensure the number of mutants across an experi-
ment are consistent with previous fitness assays.

2.11  |  Transposon sequencing analysis

Barcoded transposon insertions were summed for each gene. Dif-
ferential abundance of the individual genes in the treated and un-
treated mutant populations was assessed using DESeq2 (Love 
et al.,  2014) (v1.26.0) with the DeSeqDataSetFromMatrix and dds 
functions and their default options on the gene count matrix. A 
threshold of FDR < 0.1 and |log2 fold-change| > 1 was used to de-
termine significance. BlastKOALA (Kanehisa et al., 2016) was used 
to map protein sequences from each organism to KO terms using 
the “species_prokaryote” database. KEGG pathway enrichment was 
carried out using clusterProfiler (Yu et al., 2012) (v3.14.3) using the 
enrichKEGG function. KO terms for all differentially abundant bar-
codes (both up- and down-regulated with a FDR < 0.1, DESeq2 and 
|log2 fold-change| > 1) were provided and the organism parameter 
was set to “ko”. Heatmaps and volcano plots were generated using 
the ggplot2 R package (Wickham, 2016) (v3.3.5).

2.12  |  Comparative genomics

A previous pan-genome analysis (Bisanz et al.,  2020) was used to 
assess conservation of marR genes across gut Coriobacteriia isolate 
genomes defined using ProteinOrtho v6.0.6 (Lechner et al., 2011), 
with gene family cutoffs of 60% identity and 80% coverage. marR 
gene families were defined based on annotation of the E. lenta DSM 
2243 genome using InterProScan (Zdobnov & Apweiler,  2001). 
Our results were largely unchanged when using a looser se-
quence identity cutoff (40%). The United Human Gastrointesti-
nal Genome collection (v2.0.1) was used to assess conservation of 
tolC-like systems across human gut microbes. The 4,744 species 
representative genomes and corresponding eggNOG-db annota-
tions (Huerta-Cepas et al., 2019) were downloaded from the MGnify 
database (https://www.ebi.ac.uk/metag​enomi​cs/brows​e/genomes), 

including 619 assigned to the Bacteroidota phylum (91 isolates and 
528 metagenome-assembled genomes) (Gurbich et al.,  2023). The 
following phylum-level eggNOG gene families were used to define 
the B. thetaiotaomicron-like tolC gene cluster: 4NEXN (BT_3339), 
4NDZG (BT_3338) and 4NDZK (BT_3337). All 3 gene families were 
required to be adjacent to each other to be counted as a complete 
system, as in the B. thetaiotaomicron genome. The following phylum-
level eggNOG gene families were used to define the Escherichia coli-
like tolC genes in Proteobacteria: 1MU78 (b0463), 1MU48 (b0462), 
and 1MWCJ (b3035). These were not required to be adjacent.

3  |  RESULTS

3.1  |  Simvastatin directly inhibits gut bacterial 
growth in mixed and pure cultures

We used our established methods for the ex vivo incubation of the 
human gut microbiota (Maurice et al., 2013; Nayak et al., 2021) to 
test the impact of simvastatin on gut microbial community struc-
ture in the absence of a host. Stool samples were selected from 
ImmunoMicrobiome cohort, an ongoing study of the microbiome 
and immune system of healthy participants (Table S1). Growth was 
tracked longitudinally for 48 h by optical density and 16S rRNA gene 
sequencing (16S-seq) was performed at the experimental endpoint 
(Table S2). The simvastatin concentrations tested (≤25 μg/mL) were 
below the estimated maximum intestinal concentration (160 μg/mL) 
even after accounting for absorption in the proximal gut (96 μg/mL 
in stool).

Simvastatin had a significant impact on the gut microbiota 
across multiple metrics. Analysis of our growth curves revealed a 
dose-dependent delay in the overall growth of the human gut mi-
crobiota, resulting in a significant increase in the time it took to 
reach mid-exponential phase (Figure 1a). Community-wide carrying 
capacity and growth rate trended lower in response to simvasta-
tin, but did not reach statistical significance potentially due to in-
sufficient power (Figure S1a,b). We also observed a significant and 
dose-dependent decrease in microbial diversity, as assessed by the 
Shannon diversity index (Figure  1b) and the number of amplicon 
sequence variants (ASVs; Figure S1c). Consistent with prior studies 
(Maurice et al., 2013), analysis of the full 16S-seq dataset revealed 
marked inter-individual variations in the gut microbiota with a slight 
convergence based on simvastatin concentration (Figures  1c and 
S1d). After stratifying the data by subject, we observed clear and 
statistically significant effects of simvastatin on gut microbial com-
munity structure (Figure  1d). At the phylum level, simvastatin sig-
nificantly decreased Bacteroidota and increased Verrucomicrobiota 
(Figure  1e). Significant differences were also apparent at the ASV 
level, including 7 depleted ASVs and 3 enriched ASVs (Figure  1f). 
With the exception of an ASV identified as Eggerthella lenta, the re-
maining 6 depleted ASVs were significantly affected at both doses 
of simvastatin. An ASV identified as Bacteroides thetaiotaomicron 
was the most dramatically depleted ASV, with a 9-fold reduction in 
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abundance. Taken together, these results show that simvastatin has 
a dramatic effect on the human gut microbiota in the absence of a 
host.

Next, we sought to gain a more precise understanding of the 
growth inhibitory properties of simvastatin on human gut bacteria 
grown in isolation. We leveraged a previously generated collec-
tion of 39 human gut bacterial strains spanning 5 phyla (Table S3)  

(Nayak et al.,  2021; Spanogiannopoulos et al.,  2022). Each strain 
was grown in rich media (brain heart infusion with supplements; 
BHICHAV), which we previously showed supports the robust growth 
of this entire collection (Spanogiannopoulos et al.,  2022). Simvas-
tatin was included at a range of concentrations (1.56–100 μg/mL)  
at or below the estimated distal gut concentration (96 μg/mL). Most 
of the tested strains (30/39) had a measurable MIC (defined by a 90% 

F I G U R E  1  Simvastatin directly alters the growth and community structure of the human gut microbiota. Human ex vivo stool cultures 
(n = 4 donors, n = 3 biological replicates/concentration; Table S1) were grown with simvastatin or a vehicle control for 48 h and analyzed by 
16S rRNA gene sequencing (Table S2). (a) Time to mid-exponential growth in hours from the growth data. (b) Bacterial diversity decreases 
as the concentration of simvastatin increases based on the Shannon diversity index. (c) Principal components 1 and 3 of Euclidean distances 
using center log2-ratio (CLR)-transformed values from 16S-seq data colored by simvastatin concentration and shaped by donor sample to 
facilitate the visualization of their effects. (d) Principal components 1 and 2 of Euclidean distances using CLR-transformed values from 16S-
seq data calculated for each donor. (e) Taxonomic data from all samples aggregated at the phylum-level, CLR-transformed, and compared 
across simvastatin concentrations. (f) ASVs differentially abundant across all samples in response to simvastatin at 25 μg/mL that also show 
consistent directionality in response to simvastatin at 12 μg/mL (ALDEx2 comparing samples treated with each simvastatin concentration 
relative to the vehicle). Colors indicate the difference in CLR-transformed values between simvastatin and vehicle groups. Boxplots in panels 
a, b, e: top and bottom hinges are the first and third quartiles, horizontal lines denote the median, and whiskers extend to the maximum and 
minimum values. p-values represent Wilcoxon rank-sum tests (panels a,b,e; *p-value < 0.05, panel f) or PERMANOVA tests (panels c and d) 
between treatment groups.
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    |  7ESCALANTE et al.

decrease in carrying capacity), which ranged from 25 to 100 μg/mL  
(Figure 2 and Table S3). Of the strains with a measurable MIC, mem-
bers of the Firmicutes and Actinobacteriota phyla had a signifi-
cantly higher MIC relative to members of the Bacteroidota phylum  
(Figure  S2). Within the tested Actinobacteriota, simvastatin sensi-
tivity varied >3-fold, with Collinsella aerofaciens and Bifidobacterium 
longum tolerating higher levels than E. lenta and the other Corio-
bacteriaceae. Of note, both B. thetaiotaomicron and E. lenta were 
consistently affected by simvastatin in the context of a complex 
community and pure cultures. This fact, together with our extensive 
tools for B. thetaiotaomicron genetics (Liu et al., 2021) and E. lenta 
functional genomics (Bisanz et al., 2020) led us to focus on these two 
bacteria for more in-depth analysis.

3.2  |  E. lenta upregulates genes for membrane 
biogenesis in response to simvastatin

Given the lack of variation in simvastatin sensitivity within the Egg-
erthellaceae (Table S3), we turned to transcriptional profiling (RNA-
seq) to gain insights into the genes and metabolic pathways altered 
in response to simvastatin. We grew E. lenta in rich media and added 
3 concentrations of simvastatin [low, med, high; 0.1–1X MIC] or ve-
hicle controls at mid-exponential growth. Samples were collected 
15 min later and used for RNA-seq and analysis (Table S4).

Simvastatin induced a substantial change in E. lenta gene ex-
pression. Principal components analysis revealed clear grouping 
of the overall transcriptomes of the two higher doses relative 

F I G U R E  2  Simvastatin directly 
inhibits the growth of human gut 
bacterial isolates. A diverse panel of 
39 representative gut bacterial strains 
(Table S3) were incubated with varying 
concentrations of simvastatin (1.56–
100 μg/mL in 2-fold increments, n = 3 
biological replicates/concentration tested) 
and the MIC determined. A phylogenetic 
tree using full-length 16S rRNA gene 
sequences for each organism was 
constructed. MIC, minimum inhibitory 
concentration. The tree shows 37 of the 
isolates (2 additional Eggerthella strains 
were tested but only one of each species 
was included in the tree).
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8  |    ESCALANTE et al.

to the lowest dose and vehicle controls (Figure  3a). These dif-
ferences were statistically significant (R2 = 0.393 and p = 0.046, 
PERMANOVA; comparing simvastatin doses to vehicle controls). 
The number of differentially expressed genes (FDR < 0.1 and 
|log2 fold-change| > 1, DESeq2) was dose-dependent (Figure  3b 
and Table  S5), ranging from 2 to 250 upregulated and 0 to 240 
downregulated genes relative to vehicle controls. At the highest 
dose, 16% (490/3,086) of E. lenta protein-coding genes were dif-
ferentially expressed. The set of differentially expressed genes 
was dose-dependent, with 294 genes unique to the highest dose 
(Figure  3c). Pathway enrichment analysis demonstrated that the 
two higher doses of simvastatin consistently impacted 7 genes in-
volved in fatty acid biosynthesis important for building lipids used 
in the cell membrane (Figure 3d).

Interestingly, we observed 4 simvastatin-dependent genes an-
notated in NCBI as multiple antibiotic resistance transcriptional 
regulators (MarRs) (Sulavik et al.,  1995). MarRs typically repress 

their own promoter (Grove, 2013; Perera and Grove, 2010). Ligand 
binding releases MarR from the promoter, inducing expression of 
MarR and neighboring genes (Figure 4a). MarR has been implicated 
in stress responses as well as the degradation/export of phenolic 
compounds and antibiotics (Grove, 2013). MarRs can bind to di-
verse ligands, including the antibiotics kanamycin, salicylate, and 
2,4-dinitrophenol (Grove, 2013; Lomovskaya et al., 1995; Perera & 
Grove, 2010; Xiong et al., 2000), but direct binding to statins has 
not been reported.

In total, the E. lenta genome contains 9 MarR homologs, of 
which 4 are upregulated with a high dose of simvastatin. These 4 
gene clusters have diverse functions including ATP-binding cassette 
(ABC) drug transport, heat shock response, fatty acid biosynthesis, 
and multidrug and toxic compound extrusion (Figure 4b). Of note, 
one of these putative MarR-regulated clusters encodes 6 genes in-
volved in fatty acid biosynthesis (Figure 4b), all of which are induced 
at the two higher doses of simvastatin, consistent with our pathway 

F I G U R E  3  Simvastatin has a dose-dependent effect on the E. lenta transcriptome and induces genes for cell membrane integrity. (a) PCA 
of E. lenta DSM 2243 RNA-seq data comparing three doses of simvastatin to vehicle controls: low, low-dose (6 μg/mL); med, medium-dose 
(30 μg/mL); high, high-dose (60 μg/mL). Statistical results of PERMANOVA are reported (n = 3 biological replicates/group, Tables S4 and S5). 
(b) Number of differentially expressed genes (DEGs; FDR < 0.1 and |log2 fold-change| > 1, DESeq2) comparing each simvastatin dose relative 
to vehicle controls. (c) Overlap between DEGs across simvastatin doses. (d) Volcano plot of the medium and high simvastatin doses relative 
to vehicle controls: horizontal line, |log2 fold-change| > 1; vertical line, FDR < 0.1. Colored points represent fatty acid biosynthesis pathway 
genes found to be significantly enriched by a KEGG pathway enrichment using clusterProfiler (padj < 0.2, Benjamini–Hochberg correction). 
The KEGG overview map for fatty acid metabolism (KEGG map01212), which the fatty acid biosynthesis pathway falls under, was also 
significantly enriched due to an overlapping set of genes between them.
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    |  9ESCALANTE et al.

enrichment analysis (Figure 3d). Taken together, these results sup-
port a working model in which simvastatin either directly or indi-
rectly affects E. lenta MarR, lifting its repression of multiple gene 
clusters, including a suite of genes that are predicted to alter cell 
membrane lipid composition. Notably, all 9 MarR genes are also con-
served across the E. lenta species, supporting their core importance 
for stress response (Figure S3).

3.3  |  B. thetaiotaomicron upregulates efflux 
systems that protect against simvastatin

Next, we sought to assess the similarities and differences in simv-
astatin response in another drug sensitive bacterium. We selected 
B. thetaiotaomicron due to its robust genetic tools (Liu et al., 2021) 
and to compare a Gram-negative bacterium to the Gram-positive E. 
lenta. As done previously for E. lenta, we grew B. thetaiotaomicron to 
mid-exponential phase then added 3 concentrations of simvastatin 
[low, med, high; 0.1–1X MIC] or vehicle controls at mid-exponential 
growth. Samples were collected 15 min later and used for RNA-seq 
and analysis (Table S4).

Remarkably, B. thetaiotaomicron exhibited an even more dra-
matic transcriptional response to simvastatin than E. lenta. Prin-
cipal components analysis revealed clear grouping of the overall 
transcriptomes of all three doses relative to vehicle controls 
(Figure  5a); all three doses were statistically significant relative 
to vehicle controls (R2 = 0.47 and p = 0.003, PERMANOVA; com-
paring simvastatin doses to vehicle controls). The number of dif-
ferentially expressed genes (FDR < 0.1 and |log2 fold-change| > 1, 
DESeq2) was higher than E. lenta overall but still dose-dependent 
(Figure 5b and Table S6), ranging from 115 to 473 upregulated and 
8 to 468 downregulated genes relative to vehicle controls. At the 
highest dose, 19% of B. thetaiotaomicron genes (879/4,650) were 

differentially expressed. Thirty-one differentially expressed genes 
were independent of dose, whereas 619 were consistently altered 
at the two higher doses (Figure 5c). Pathway enrichment analysis 
demonstrated a dose-independent enrichment for differentially 
expressed genes involved in oxidative phosphorylation (Figure 5d). 
The highest dose also affected genes involved in histidine, glyox-
ylate/dicarboxylate, and galactose metabolism pathways, whereas 
the lowest dose affected genes involved drug (beta-lactam) resis-
tance and the TCA cycle (Figure 5d).

Interestingly, many of the top differentially expressed genes 
encoded the subunits of 3 distinct multidrug efflux systems  
(Figures 6a,b). All of these systems are homologous to the AcrAB-
TolC system in Escherichia coli (Table  S7), which enables the ef-
flux of a wide variety of compounds, including antibiotics (Li and 
Nikaido, 2009). Similar to E. coli, each efflux system in B. thetaiotao-
micron includes three major subunits, all of which are differentially 
expressed in response to simvastatin: (i) the hydrogen-dependent 
inner membrane transporter AcrB; (ii) the periplasmic membrane 
fusion protein AcrA; and (iii) the outer membrane channel protein 
TolC (Li & Nikaido,  2009). Gene order is conserved in the 3 pu-
tative B. thetaiotaomicron AcrAB-TolC efflux systems (Figure 6d). 
Although the B. thetaiotaomicron systems remain uncharacter-
ized at the biochemical level, we recently used transposon muta-
genesis to implicate one of the 3 systems (encoded by the genes 
BT3337-9; referred to herein as AcrAB-TolC1) in resistance to the 
antibiotics fusidic acid and cefoxitin, and the antipsychotic chlor-
promazine (Liu et al., 2021).

To test the impact of all three efflux systems on growth in the 
presence of simvastatin, we turned to our previously published bar-
coded transposon sequencing library (Liu et al., 2021). This barcoded 
transposon mutant library carries transposon insertions in 4,055 
non-essential genes whose change in abundance can be measured 
in the presence of a stressor, previously described as a genome-wide 

F I G U R E  4  Simvastatin induces multiple MarR-dependent gene clusters in E. lenta. (a) Diagram of a marR and its mode of gene regulation 
(created with BioRe​nder.com). MarR acts as a transcriptional repressor of itself and neighboring gene clusters by binding to site-specific 
DNA regions upstream. When MarR is bound to a ligand, repression is released and allows for the transcription of previously repressed 
genes (Grove, 2013). (b) Locus diagram showing the 4 differentially expressed marR genes (FDR < 0.1 and |log2 fold-change| > 1, DESeq2) and 
their adjacent gene clusters across different doses of simvastatin. Colors are log2 fold-changes relative to vehicle controls. Significance is 
represented with an asterisk. Gene and gene cluster annotations shown where available.
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fitness assay (Liu et al., 2021). We performed a fitness assay in which 
we grew up the transposon mutant library in the presence of low 
[0.1X MIC] levels of simvastatin or vehicle and then looked at the 
differential abundance of the gene insertions relative to the vehicle 
(Table S8). In total, we identified 102 genes that have significantly 
improved growth in simvastatin when disrupted and 117 genes 
whose insertions had significantly impaired growth (FDR < 0.1, 
|log2 fold-change| > 1, DESeq2; Table S9). The genes that exhibited 
increased growth upon transposon insertion included cardiolipin 
synthetase (BT3978, Table  S9), potentially suggesting that cardio-
lipin incorporation into the inner membrane increases simvastatin 
sensitivity (Davlieva et al., 2013). On the other hand, we noted mul-
tiple genes important for simvastatin tolerance, including the trans-
porter system encoded by BT3337-BT3339 (referred to herein as 

AcrAB-TolC1), important for fusidic acid tolerance (Liu et al., 2021) 
(Figure 6c).

We performed a more in-depth analysis of the three B. thetaio-
taomicron AcrAB-TolC systems that we had previously identified by 
RNA-seq. The greatest fitness defect was observed when AcrAB-
TolC1 was disrupted (Figures 6c,e and Table S9), consistent with its 
high level of baseline gene expression (Figure S4a). All three systems 
were significantly induced by low levels of simvastatin, with AcrAB-
TolC2 and AcrAB-TolC3 showing the most dramatic upregulation 
(Figures 6b,d and S4a–c).

Follow-up experiments confirmed that the sensitivity of B. the-
taiotaomicron to simvastatin was increased in response to chemical 
and genetic disruption of drug efflux. We used phenylalanine-
arginine β-napthylamide (PAβN), which inhibits RND family drug 

F I G U R E  5  Simvastatin has a dose-dependent effect on the B. thetaiotaomicron transcriptome. (a) PCA of B. thetaiotaomicron DSM2079 
RNA-seq data comparing three doses of simvastatin to vehicle controls: low, low-dose (5 μg/mL); med, medium-dose (25 μg/mL); high, 
high dose (50 μg/mL). Statistical results of PERMANOVA are reported (n = 3 biological replicates/group, Tables S4 and S6). (b) Number of 
differentially expressed genes (DEGs; FDR <0.1 and |log2 fold-change| > 1 DESeq2) comparing each simvastatin dose relative to vehicle 
controls. (c) Overlap between DEGs across simvastatin doses. (d) KEGG pathway enrichments for DEGs (padj < 0.2, Benjamini–Hochberg 
correction): colors, log10 padj; count, number of DEGs. (b–d) n = 2–3 biological replicates/group; one sample from the high dose simvastatin 
group was excluded due to low sequencing depth (Table S4).
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efflux systems, including AcrAB-TolC (Lamers et al.,  2013). The  
B. thetaiotaomicron MIC for simvastatin significantly decreased in 
response to PAβN (Figure 7a). We obtained stocks with transposon 
insertions in each of the three B. thetaiotaomicron tolC genes (Arjes 
et al., 2022). Transposon insertions in two of the loci (tolC1::Tn and 
tolC3::Tn) resulted in a lower MIC for simvastatin relative to wt  
(Figure 7b). These results are generalizable to other species; disrup-
tion of the single tolC encoded by E. coli (ΔtolC::KanR) led to a sig-
nificant increase in simvastatin sensitivity (Figure 7c). Interestingly, 
while AcrAB-TolC systems are prevalent in members of the Bacteroi-
dota and Proteobacteria, they vary in copy number; Bacteroidota  

strains can have a maximum of up to 7 systems (Figure S5a), while 
Proteobacteria have a maximum of 2 (Figure S5b). These results, 
together with another recent report (Maier et al., 2018), highlight 
the key role of multi-drug efflux systems in bacterial resistance to 
both antibiotics and host-targeted drugs.

4  |  DISCUSSION

Our results demonstrate that simvastatin elicits a direct antibacte-
rial effect on a broader range of human gut bacteria than previously 

F I G U R E  6  Simvastatin induces drug efflux systems in B. thetaiotaomicron that enable growth. (a) Schematic of a characterized Resistance-
Nodulation-Division (RND) family efflux system (adapted from Anes et al., 2015). (b, c) Volcano plots of RNA-seq (b, Table S6) and RB-TnSeq 
(c, Table S9) following exposure of B. thetaiotaomicron to a low dose of simvastatin relative to vehicle controls (5 μg/mL, 0.1X MIC, n = 3 
biological replicates/group). Genes homologous to the RND family efflux system BT3337-BT3339/AcrAB-TolC1 (Liu et al., 2021) are labeled 
red (Table S7). Points above the horizontal dotted line and to the right and left of the vertical dotted lines have an FDR < 0.1 and |log2 fold-
change| > 1 (DESeq2). (d,e) Genomic loci in B. thetaiotaomicron containing RND efflux genes and neighboring genes. Asterisks indicate genes 
differentially abundant in the presence of simvastatin relative to vehicle controls. (b–e) AcrAB-TolC1 refers to BT3337-BT3339; AcrAB-TolC2 
refers to BT1965-1967; AcrAB-TolC3 refers to BT2940-BT2942 (Tables S7 and S9).
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appreciated (Ko et al., 2017; Maier et al., 2018). A prior in vitro screen 
identified a single dose of simvastatin (8.37 μg/mL, 20 μM) that af-
fected the growth of 3 gut bacterial isolates (P. distasonis, R. torques, 

and R. intestinalis) in mono-culture (Maier et al., 2018). In this study, 
we expanded the list of simvastatin-sensitive strains by testing a 
range of physiologically relevant drug concentrations on human gut 
bacterial communities and a panel of gut bacterial isolates. Drug 
sensitivity varied in the context of a community versus pure cul-
ture. However, common trends in susceptibility to simvastatin were 
observed from the phylum- to strain-level. Members of the phylum 
Bacteroidota were on average more susceptible to simvastatin. A 
subset of strains from multiple phyla had consistent susceptibility 
to simvastatin when present in either a community or in isolation, 
including B. thetaiotaomicron and E. lenta, which we chose for more 
in-depth follow-up experiments.

It remains perplexing that simvastatin has direct antimicrobial 
effects given that HMG-CoA reductase, the canonical target of sim-
vastatin, is rare in human gut bacterial genomes (Gill et al.,  2006; 
Heuston et al., 2012). More work is needed to elucidate the mecha-
nism(s) of action that leads to the observed inhibition of diverse gut 
bacterial species.

Our results indicate that simvastatin has a broad impact on gut 
bacterial gene expression. These results mirror our prior work on 
the antimetabolite drugs methotrexate and 5-fluorouracil, which 
demonstrate the marked effect drug exposure can have on gut bac-
terial transcriptional activity (Nayak et al., 2021; Spanogiannopou-
los et al.,  2022). This suggests that simvastatin either directly or 
indirectly alters the core metabolic pathways of gut bacteria which 
are often essential and not reflected in loss-of-function screens. A 
gain-of-function screen using a barcoded overexpression bacterial 
shotgun expression library sequencing (Boba-seq), might help com-
plement some of our findings and has the advantage of capturing 
essential genes (Huang et al.,  2022). Future studies utilizing affin-
ity probes (Brandvold et al., 2021) or other chemical biology tools 
could help to identify proteins that directly interact with simvastatin 
within bacterial cells, complementing the bacterial genetic and tran-
scriptomic tools used in this study.

The bacterial cell membrane and its changes in permeability from 
the incorporation of fatty acids play a key role in antibiotic resis-
tance (Royce et al., 2013; Su et al., 2021). This has been established 
for antibiotics like ciprofloxacin (Su et al., 2021), but not for antibac-
terial statins. Here, we found that E. lenta responds to simvastatin 
via the upregulation of genes for fatty acid biosynthesis. More work 
is needed to explore exactly how the enhanced biosynthesis of fatty 
acids might contribute to simvastatin resistance. This can be stud-
ied by employing fatty acid biosynthesis inhibitors (Su et al., 2021) 
like triclosan and 2-aminooxazole in synergy with simvastatin to test 
how their combination affects simvastatin susceptibility and cell 
morphology.

We also found that a subset of transcriptional regulators from 
the MarR family are upregulated by E. lenta in response to simvas-
tatin. MarR-type regulators generally respond to environmental 
stress responses, including stress triggered by antibiotics, by con-
trolling a small set of genes often located in the same gene cluster  
(Lomovskaya et al.,  1995; Poole et al.,  1996; Srikumar et al.,  2000; 
Xiong et al., 2000). In E. lenta, these MarR homologs appear to regulate  

F I G U R E  7  RND family drug efflux systems decrease simvastatin 
sensitivity in B. thetaiotaomicron and E. coli. (a) B. thetaiotaomicron 
simvastatin MIC is decreased in response to the efflux inhibitor 
PAβN (Spearman ρ = −0.81, p = 0.00015; n = 2 biological replicates/
concentration). Regression line and 95% confidence interval are 
shown. (b) Transposon insertions in individual tolC genes decreases 
the MIC of simvastatin for B. thetaiotaomicron. (Kruskal–Wallis 
multiple comparison test; n = 3 biological replicates/concentration). 
(c) TolC protects E. coli from simvastatin. The ΔtolC::KanR strain 
exhibits significantly lower carrying capacity in response to 
increasing concentrations of simvastatin (Spearman ρ = −0.97, 
p < 2.2e−16; n = 3 biological replicates/concentration). Regression 
lines and 95% confidence intervals are shown.

(a)

(b)

(c)
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multiple gene clusters in response to simvastatin, including genes for 
membrane biogenesis (fatty acid biosynthesis), increased drug efflux 
(ABC and MATE transporters), and heat shock response (DnaK). 
More work is needed to further characterize how simvastatin inter-
acts with MarR to affect these systems. Dissociation of its genetic 
target is triggered by ligand binding, which could be due to a direct 
binding to simvastatin or to another compound that is responsive to 
simvastatin exposure.

Similarly, our data suggests that the gut bacterium B. thetaio-
taomicron also uses the cell wall to evade the antibacterial effects 
of simvastatin. We identified three distinct AcrAB-TolC efflux 
systems, one of which had been previously characterized as im-
portant for the tolerance to the antibacterial fusidic acid which is 
lipophilic and structurally resembles simvastatin (Liu et al., 2021). 
These systems are all homologous to E. coli, which only encodes 
a single AcrAB-TolC efflux system (Nikaido & Takatsuka,  2009). 
More work is needed to assess the substrate-specificity and ex-
pression level of B. thetaiotaomicron's different AcrAB-TolC efflux 
systems and their relative impacts on growth in the presence of 
simvastatin and other drugs. While all three efflux systems were 
differentially expressed in the presence of simvastatin, only one of 
these efflux systems significantly impacted competitive growth in 
our transposon data, suggesting that system is more important for 
simvastatin tolerance.

This study has multiple key limitations. The bacterial determi-
nants of susceptibility to simvastatin at the cellular and community 
level remain to be fully elucidated, but likely involve mechanisms of 
resistance or other microbe-microbe and host–microbe interactions. 
Furthermore, it will be important to extend our paired transcrip-
tomic and genetic analyses to additional human gut bacterial spe-
cies, for example, the simvastatin resistant Bifidobacterium longum 
and Clostridium sporogenes, which are both genetically tractable. Of 
note, prior work has indicated that gut bacteria metabolize simvas-
tatin (Aura et al., 2011; Đanić et al., 2023), which could potentially 
influence the variation in drug sensitivity we observed. It remains 
to be explored whether any of the responses observed in this study 
could be attributed to simvastatin metabolites. While bacterial drug 
sensitivity was evaluated in vitro, more work is needed to assess the 
susceptibility of gut bacteria to simvastatin in vivo, including in gno-
tobiotic and conventionally raised mice or other model species.

These findings open the door to exploring how simvasta-
tin's antibacterial properties can be contributing to changes in 
gut microbiome signatures and how they might explain adverse 
and beneficial effects from statin intake previously observed in 
metagenomics-based association studies (Vieira-Silva et al., 2020; 
Zhernakova et al., 2016). Our current results clearly demonstrate 
the feasibility and utility of focused studies of individual non-
antibiotic drugs, like simvastatin, that can have unintended effects 
for diverse members of the human gut microbiota. Such knowledge 
sets the foundation for further mechanistic dissection of these 
drug-microbiome interactions while informing ongoing work in hu-
mans looking at cross-sectional and longitudinal differences in the 
gut microbiome of patients on these widely used medications.
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