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Abstract Bacteria within the gut microbiota possess the ability to metabolize a wide array of 
human drugs, foods, and toxins, but the responsible enzymes for these chemical events remain 
largely uncharacterized due to the time- consuming nature of current experimental approaches. 
Attempts have been made in the past to computationally predict which bacterial species and 
enzymes are responsible for chemical transformations in the gut environment, but with low accuracy 
due to minimal chemical representation and sequence similarity search schemes. Here, we present 
an in silico approach that employs chemical and protein Similarity algorithms that Identify Micro-
bioMe Enzymatic Reactions (SIMMER). We show that SIMMER accurately predicts the responsible 
species and enzymes for a queried reaction, unlike previous methods. We demonstrate SIMMER use 
cases in the context of drug metabolism by predicting previously uncharacterized enzymes for 88 
drug transformations known to occur in the human gut. We validate these predictions on external 
datasets and provide an in vitro validation of SIMMER’s predictions for metabolism of methotrexate, 
an anti- arthritic drug. After demonstrating its utility and accuracy, we made SIMMER available as 
both a command- line and web tool, with flexible input and output options for determining chem-
ical transformations within the human gut. We present SIMMER as a computational addition to the 
microbiome researcher’s toolbox, enabling them to make informed hypotheses before embarking on 
the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter 
human ingested compounds.

Editor's evaluation
This paper provides important advances in utilizing chemical, metagenomic and enzyme mecha-
nistic insights into the roles gut microbiota play in health- related chemical conversions. The authors 
convey results from a series of convincing studies that outline the utility of their computational 
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platform, one that will be useful to both specialized microbiome researchers as well as a broad audi-
ence of scientists interested in the numerous ways non- host enzymes impact host biology.

Introduction
Humans consume a large array of foods, therapeutics, and other xenobiotics that are processed, in 
part, by enzymes of bacteria residing within the gut. While some bacterial enzymes are orthologous 
to the human metabolism repertoire, many bacteria possess metabolic capabilities distinct from our 
own (Zimmermann et al., 2019a). It is important to ascertain the extent of microbial capacity for 
chemical transformation because it has implications for the bioavailability, toxicity, and efficacy of the 
compounds humans ingest (Koppel et  al., 2017; Spanogiannopoulos et  al., 2016). Additionally, 
because the human gut microbiome differs from individual to individual, knowledge of the prevalence 
and abundance of bacterial enzymes must be determined before beneficial clinical and dietary deci-
sions can be made (Javdan et al., 2020).

While experimental methods can be employed to expand what we know of bacterial enzymatic 
capabilities in the gut, the scientific community lacks genetic tools for nearly all bacterial species 
of the human microbiota, and heterologous expression in model organisms can fail for a plethora 
of reasons (Bisanz et al., 2020; Patel et al., 2022). When experimental methods are tractable, the 
time required is often so extended that knowledge is gained in a low- throughput manner. For these 
reasons, attention should turn to the employment of in silico computational methods that can guide 
experimentalists in their hypothesis- building process by aiding in the prioritization of substrates, 
species, and genes worth studying (Aziz et al., 2018).

Recent attempts have been made to create computational descriptions of chemical transformation 
by human gut bacteria, but none can be expanded to predict the metabolic capabilities of bacterial 
proteins with unknown function or to explore the capacity of microbial enzymes to degrade novel 
substrates. Two previously published methods aimed to predict known drug metabolism events within 
the human gut microbiome, but the accuracy of their species and enzyme predictions was limited 
due to the fact that both tools only consider substrates, rather than a full chemical description of 
substrate(s), cofactor(s), and product(s) formed in a reaction (Guthrie et al., 2019; Sharma et al., 
2017). Both tools were also limited by the use of small databases that do not fully capture the diversity 
of the human gut microbiome (Guthrie et al., 2019; Sharma et al., 2017).

To address these gaps in accurate predictive software, we present SIMMER, a tool that combines 
chemoinformatics and metagenomics approaches to accurately predict bacterial species and enzymes 
capable of known biotransformations in the human gut. Given an input reaction, SIMMER predicts 
specific bacterial enzyme sequences responsible for the transformation. Each predicted sequence 
is annotated with taxonomy, potential function, and prevalence/abundance in human metagenomic 
samples.

Our key innovations are the use of full chemical representations that include cofactors employed 
and products produced in a reaction, the use of statistically informed sequence searches of a compre-
hensive human gut microbiome gene catalog, and the development of an enzyme class predictor 
based on reaction rather than gene sequence. As a use- case, we present evidence that SIMMER 
provides accurate predictions of bacterial enzymes responsible for known drug metabolism events, 
and we identify the likely bacterial enzyme for 88 drugs known to be metabolized by the gut micro-
biome for which the enzyme was previously unknown. We evaluated these predictions on external 
datasets, and for one reaction, methotrexate (MTX) hydrolysis, we characterized human gut micro-
biome bacterial metabolism in vitro across 42 strains.

Results
SIMMER pipeline to predict xenobiotic metabolizing enzymes
There are many desiderata for a bacterial drug metabolism predictor (Aziz et  al., 2018). Such a 
tool must be able to, based on chemical analogy to known bacterial chemistry, predict bacterial 
species, specific enzyme sequences, and the prevalence and abundance across human samples of 
those predicted species and sequences. We developed SIMMER, a tool that leverages chemical and 
protein similarity to identify enzymes in the human microbiome that could perform a queried chemical 
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reaction (Figure 1). Given input substrate(s), metabolite(s), and any known cofactors, SIMMER predicts 
bacterial enzymes capable of performing the reaction and quantifies their prevalence and abundance 
in the human gut. SIMMER accomplishes this by chemically fingerprinting an input reaction, and then 
comparing it to all reactions in MetaCyc (Caspi et  al., 2020). Enzyme annotations from the most 
similar MetaCyc reactions are then used as queries for a protein similarity search to find homologs in 
the genomes of gut bacteria. To decrease the runtime of a SIMMER query, we precomputed chemical 
descriptions and protein similarity searches for all reactions in MetaCyc.

SIMMER’s underlying data were drawn from the MetaCyc reaction database because its small- 
molecule reaction descriptions each possess at least one experimentally validated enzyme annotation 
and because it is currently the most comprehensive database of its kind (Altman et al., 2013; Caspi 
et al., 2020). To build a precomputed chemical search space for SIMMER queries (Figure 1A), we 
created two- dimensional fingerprint representations for 8914 enzyme- driven reactions in MetaCyc 
(Caspi et al., 2008; Schneider et al., 2015). Using these fingerprints, we estimated the similarity 
between all pairs of reactions based on Tanimoto coefficients. To build the enzyme backbone of 

Figure 1. SIMMER architecture. (A) Precomputation on 8914 gene- annotated bacterial reactions downloaded from MetaCyc. Chemical fingerprints 
representing each MetaCyc reaction were created from SMILES descriptors. A latent chemical space was then created via a pairwise reaction similarity 
matrix based on Tanimoto coefficients. For each reaction, relevant gene sequences were retrieved from UniProt and Entrez database linkouts and 
used to create multiple sequence alignments and subsequent profile hidden Markov models (pHMMs) using ClustalO and HMMER3, respectively. 
pHMMs were used to retrieve homologs in a catalog of human gut microbiome genes. (B) Running a SIMMER query. After receiving a reaction query 
(input compound, cofactors, and products), SIMMER fingerprints the reaction and compares it to the precomputed chemical space from (A). MetaCyc 
reactions are sorted by similarity to the query. From the most similar reaction(s), human gut microbiome enzymes are reported along with their 
abundance and prevalence in gut microbiomes. As an auxiliary output, Enzyme Commission (EC) numbers are predicted based on enrichment in the 
ranked reaction list.

https://doi.org/10.7554/eLife.82401
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SIMMER, we compiled the Uniprot and/or Entrez gene identifiers linked to each MetaCyc trans-
formation into a profile hidden Markov model (pHMM) that represents the diversity of the enzyme 
family for a respective reaction. The resulting pHMMs were then used to query the Unified Human 
Gastrointestinal Genome (UHGG) collection of 286,997 isolate genomes and metagenome assem-
bled genomes from the human gut environment (Almeida et al., 2021). Additionally, prevalence and 
abundance of all pHMM search hits were assessed in stool metagenomes from the PREDICT human 
cohort using MIDAS2, an implementation of Metagenomic Intra- Species Diversity Analysis System 
(MIDAS) designed for use with the UHGG catalog (Almeida et al., 2021; Nayfach et al., 2016; Zhao 
et al., 2022).

After creating SIMMER’s precomputed chemical and pHMM search space, we next made SIMMER 
queryable (Figure 1B). When queried with a chemical transformation, SIMMER computes the chem-
ical similarity of the input to all precomputed MetaCyc reactions, and sorts all MetaCyc reaction 
fingerprints according to their ascending Euclidean distance from the query. From this sorted list, 
SIMMER outputs enzymes (i.e., the precomputed pHMM search hits for the closest reactions) respon-
sible for the query reaction. As an auxiliary function to enzyme sequence prediction, SIMMER addi-
tionally predicts an Enzyme Commission (EC) code that describes the chemical nature of the query. 
EC codes are four- digit identifiers of enzyme- driven reactions, where each digit describes the reaction 
with increasing chemical granularity (McDonald et al., 2009). The first digit, the EC class, describes 

Figure 2. SIMMER’s chemical representations capture information relevant to enzymatic reactions. (A) SIMMER clusters similar reactions together 
in chemical space. To analyze SIMMER’s ability to group chemically similar reactions, we examined reaction similarity within versus without Enzyme 
Commission (EC) classes using the precomputed MetaCyc reaction dataset (N = 8914 reactions). A silhouette- like euclidean distance score was created 
by determining for each reaction its euclidean distance to all reactions within its EC class versus outside its EC class. For all EC classes, scores were 
smaller within versus without EC classes using SIMMER’s chemical representation, indicating that SIMMER can detect reaction similarity within EC 
classes. From the pairs of distributions, we computed a Kolmogorov statistic to determine if the distributions significantly (p < 0.05) differed. (B) The F1- 
score, or harmonic mean of SIMMER’s precision and recall, when predicting EC numbers on a subset of the MetaCyc database (N = 576 reactions total; 
96 per EC class). The score is high for EC classes, and it generally decreases as an EC number’s resolution increases.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Euclidean distances for reactions in the same versus other EC classes across reaction representations, and performance statistics for 
SIMMER's EC class predictor.

Figure supplement 1. SIMMER predicts an Enzyme Commission (EC) code (i.e., reaction type) for a query reaction if there is an enrichment of a 
particular EC at the top of the reaction list.

Figure supplement 2. Confusion matrices for SIMMER Enzyme Commission (EC) class predictions.

Figure supplement 3. Euclidean distance distributions and silhouette scores for top- level Enzyme Commission (EC) codes are resilient to fingerprint 
type.

Figure supplement 4. Euclidean distance distributions and silhouette scores for top- level Enzyme Commission (EC) codes are sensitive to chemical 
representation type.

https://doi.org/10.7554/eLife.82401
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broad chemistry such as whether the reaction is an oxidoreduction, hydrolysis, etc. event. The second 
and third digits, the EC sub- class and sub- sub- class, describe more detailed chemical information such 
as electron donor or transfer group identity. The fourth and final digit, the EC serial designation, often 
describes a reaction’s specific substrate(s). We implemented and validated a novel method to predict 
EC codes by extending a common approach to gene set enrichment analysis (GSEA) (Figure 2—
figure supplement 1; Subramanian et al., 2005). With this enrichment method, SIMMER predicted 
reaction types for queries with high recall and accuracy for EC classes, sub- classes, and sub- sub- 
classes (Figure  2B, Figure 2—source data 1, Figure  2—figure supplement 1, Figure  2—figure 
supplement 2).

We hypothesized that SIMMER accurately predicted the bacterial players responsible for chemical 
transformations due to the tool’s use of a full reaction that includes reactants, cofactors, and prod-
ucts, rather than just substrates. We assessed this hypothesis by demonstrating that SIMMER groups 
similar reactions together in chemical space. MetaCyc reactions possess EC annotations that describe 
the chemical class of a reaction (e.g., oxidoreduction, hydrolysis, intramolecular rearrangement, etc). 
We queried SIMMER with all EC annotated MetaCyc reactions and demonstrated that queries group 
significantly closer to other reactions within their EC class than they do to reactions of a different 
class (Figure 2A). We determined that SIMMER’s ability to group similar reactions in chemical space 
is resilient to different fingerprinting methods (Figure 2—figure supplement 3), but not to loss of 
products created and cofactors consumed in a reaction (Figure 2—figure supplement 4). Thus, we 
showed that similar reactions only cluster together in chemical space when a full reaction description 
(i.e., SIMMER’s representation method) is employed.

Because SIMMER was created with the assumption that chemically similar reactions are mediated 
by sequence similar enzymes, we next ensured that similarity within SIMMER’s chemical space could 
be used to find shared, responsible enzymes. For all MetaCyc enzymes associated with multiple reac-
tions, one reaction was used as a SIMMER query, and the second reaction searched for in the ordered 
reaction list output. As a negative control, these reaction similarity results were then compared to all 
possible pairwise combinations of reactions not conducted by the same enzyme. SIMMER predicted 
high similarity between reactions conducted by a shared enzyme, and low similarity for those reactions 

Figure 3. SIMMER’s chemical representations can be used to find shared, responsible enzymes. (A) When SIMMER was queried with a MetaCyc 
reaction, other reactions driven by the same enzyme are returned as the most similar. As a contrast, reactions driven by a different enzyme yield a more 
uniform rank distribution. Solid lines of the violin plots depict median reaction similarity rank and dashed lines represent lower and upper quartile 
ranges. (B) There is a negative association between pairwise reaction euclidean distance and pairwise protein global percent identity, but it is highly 
variable, demonstrating the need for protein searches that do not rely on high global percent identity to capture shared function.

The online version of this article includes the following source data for figure 3:

Source data 1. Pairwise similarities for SIMMER's underlying chemical and protein data.

https://doi.org/10.7554/eLife.82401
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without a shared enzyme (Figure 3A). We also found a negative association between chemical reaction 
distance and global sequence similarity of MetaCyc enzyme annotations, though there is much varia-
tion in this relationship (Figure 3B). This reflects the known association between sequence similarity 
and similarity in chemical function, as well as reports that this relationship can often be overestimated 
(Tian and Skolnick, 2003). Indeed, MetaCyc reactions with identical chemical representations could 
be conducted by proteins with only ~20% global percent identity all the way to 100% (Figure 3B). 
This relationship informed our decision to use pHMM searches rather than BLAST to find sequence 
similar proteins from the human gut microbiome, as pHMM searches rely on matches of conserved 
sites rather than global percent identity between sequences. Together, these analyses informed the 
manner in which we combined chemical and protein similarity to create a microbiome enzyme predic-
tion tool.

An expanded list of gut bacterial enzymes relevant to known cases of 
drug metabolism
To assess SIMMER’s prediction accuracy for previously characterized reactions and to mount a compar-
ison to existing methods, we used drug metabolism as a use- case. First, we curated 300 drug metabo-
lism events associated with the human gut microbiome from the literature (Supplementary file 1). For 
33 of these reactions the responsible bacterial enzyme, characterized metabolite(s), and associated 
EC annotation are known (Supplementary file 1). These 33 reactions are conducted by 18 enzymes. 
Due to orthology and proclivity for genetic transfer between even distantly related bacteria, however, 
there are likely many as yet undiscovered homologs of these drug- metabolizing enzymes that can 
catalyze identical drug metabolism events (Pollet et al., 2017). To account for this, we created an 
expanded database (Figure 4, Figure 4—figure supplement 1, Figure 4—source data 1) of the 18 
characterized enzymes from pHMM and phmmer searches of the UHGG database (Almeida et al., 

Figure 4. An expanded list of gut bacterial enzymes relevant to known cases of drug metabolism. Eleven of the 
18 enzymes responsible for positive control drug metabolism events have high- confidence homologs that we 
gathered by filtering for biological significance.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. UHGG database identifiers for all putative homologs of the 18 previously characterized drug 
metabolizing enzymes.

Figure supplement 1. An expanded list of gut bacterial enzymes relevant to known cases of drug metabolism.

https://doi.org/10.7554/eLife.82401
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2021), yielding 52,849 total candidate homologs (a median of 1087 candidates per enzyme). After 
filtering enzymes by hmmer significance, alignment length, presence in data from the human jejunum 
(Zmora et  al., 2018) and RNA- sequencing studies (Integrative HMP (iHMP) Research Network 
Consortium, 2019), and predicted affinity for the substrate in question using the Similarity Ensemble 
Approach (Keiser et al., 2007), our database contained a median of 2 high- confidence homologous 
sequences per enzyme (range = 0–460 across the 18 enzyme families, Figure 4, Figure 4—figure 
supplement 1, Figure 4—source data 1). These 741 additional enzyme sequences for 33 reactions 
formed an expanded testing set of known gut bacterial enzymes.

SIMMER captures known gut bacterial enzymes involved in drug 
metabolism
With our expanded database of drug- metabolizing enzymes from the human gut microbiome in hand, 
we next verified that SIMMER can accurately predict responsible enzymes and reaction types for the 
33 known chemical transformations. Only 3 of these 33 reactions are themselves MetaCyc entries 
(5- ASA, dopamine, and levodopa degradation); if enzymes of reactions not described in MetaCyc 
were also accurately predicted, it would show that SIMMER can discover non- identical yet chemically 
similar reactions.

SIMMER accurately predicted the specific enzymes from the human gut microbiome that conduct 
the 33 query reactions (Figure 5—source data 1). This enzyme list was populated by the results of the 
precomputed pHMM searches of human microbiome catalogs with annotated gene sequences from 
MetaCyc reactions (Figure 1A). In 29 cases (88%), the characterized (i.e., positive control) enzyme(s) 
for a reaction was found in the output enzyme list for the top 20 of the ranked MetaCyc reactions 
(Figure 5, Figure 5—figure supplement 1). We chose the top 20 out of ~9000 reactions as an accu-
racy cutoff, because this was the median rank of a true positive reaction in our analysis of MetaCyc 

Figure 5. SIMMER captures known gut bacterial enzymes involved in drug metabolism. (A) SIMMER accurately predicted Enzyme Commission (EC) 
classes for 28 previously characterized reactions that possess EC annotations. As with the MetaCyc database (Figure 2B), accuracy dropped off as EC 
resolution increased. (B) SIMMER predicted bacterial sequences previously shown to drive 33 drug metabolism events in the gut microbiome. Depicted 
is the rank (out of N = 8914 reactions) of the MetaCyc reaction that yielded a gut microbiome homolog matching the known positive control sequence. 
Reported accuracy is based on such a reaction being within the top 20 ranked reactions (dashed blue line).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Performance analysis of 33 known chemical transformations (positive controls) using SIMMER's full representation or only a substrate.

Figure supplement 1. Distributions of all MetaCyc reactions’ euclidean distances to the positive control list queries.

Figure supplement 2. The relationship between accuracy and false positives as a user explores more reactions from SIMMER’s prediction output.

https://doi.org/10.7554/eLife.82401
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reactions conducted by the same enzyme (Figure 3A, Figure 5—figure supplement 2). Since the posi-
tive controls span four EC classes (EC1 oxidoreductases, EC2 transferases, EC3 hydrolases, and EC4 
lyases), this result demonstrates SIMMER’s ability to accurately predict microbiome- based enzymes 
for a diversity of reaction types. Also, despite inaccurate EC predictions for nicardipine reduction and 
brivudine transformation, SIMMER was able to, respectively, predict AzoR and BT_4554 enzymes 
as responsible for the reactions, because enzyme and EC predictions are separately computed by 
SIMMER (Figure 5, Figure 5—figure supplement 1, Figure 5—source data 1).

SIMMER often predicts hundreds of sequences potentially responsible for an input reaction, 
meaning that the possibility of false positives is high. Because biotransformations of the microbiome 
are understudied, however, there does not exist in the literature a definitive list of all the bacterial 
enzymes that do not conduct a given reaction. For this reason, we were unable to directly assess 
an enzyme prediction false positive rate. Instead, we took a conservative approach and defined all 
output reactions preceding that which yielded the positive control enzyme sequence as false positives 
(Figure 5—figure supplement 2).

Of the 33 drug metabolism events known to occur via human gut bacterial enzymes, EC annota-
tions exist for 30. For five queries SIMMER predicted more than one significant EC class, but for 28 
out of the 30 reactions (including these five), SIMMER’s top EC class prediction was correct (Figure 5, 
Figure 5—figure supplement 1, Figure 5—source data 1). The two failed EC predictions were for 
nicardipine reduction (inappropriately predicted as an isomerase reaction) and for brivudine transfor-
mation (for which SIMMER made no significant prediction).

Table 1. Comparison to existing methods.

DrugBug (Sharma 
et al., 2017)

MicrobeFDT (Guthrie 
et al., 2019) SIMMER

Underlying 
databases

Number of chemicals 2324
compounds

10,822
compounds

8914 reactions
(12,439 unique 
compounds)

Number of bacterial 
genomes

491 (custom 
database)

3008 (IMG) 286,997 (UHGG)

Input types Accepts novel SMILES ✓

User options for 
different chemical 
fingerprints

✓ ✓

Output types Reaction similarity 
measure

✓

EC predictions ✓ ✓ ✓

Enzyme and species 
predictions

✓ ✓

Function predictions ✓

Prevalence/abundance ✓ ✓

Network relationships ✓

Usability Web server ✓ ✓

Command- line tool ✓

Docker container ✓

Accuracy Prediction of previously 
characterized enzymes

3% NA 88%

Prediction of previously 
characterized EC 
numbers

37% 29% 93%

The online version of this article includes the following source data for table 1:

Source data 1. All data relevant to the comparison of SIMMER, DrugBug, and MicrobeFDT methods.

https://doi.org/10.7554/eLife.82401
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SIMMER outperforms existing methods
To mount a comparison to the other in silico methods that, in part, aimed to describe microbiome 
drug metabolism, we next queried the 33 positive control reactions using MicrobeFDT and DrugBug 
(Table 1) both of which rely solely on substrate chemical similarity rather than information from a 
whole reaction (Guthrie et al., 2019; Sharma et al., 2017).

For the 30 EC annotated positive control reactions, DrugBug had 37% accuracy in predicting EC 
classes (in comparison to SIMMER’s 93%) and predicted the correct enzyme for only a single reaction, 
SN38 glucuronide deconjugation, despite the presence of chemically similar reactions metabolized 
by the same enzyme amongst the positive controls (Table 1—source data 1). We additionally queried 
SIMMER with the four positive controls (ginsenoside Rb1, quercetin- 3- glucoside, cycasin, and soriv-
udine) associated with characterized bacterial enzymes from the original DrugBug publication (Table 
1—source data 1). Both DrugBug and SIMMER were able to predict EC classes for sorivudine, but 
only SIMMER was able to accurately predict the specific enzyme (BT_4554) responsible for the drug’s 
degradation. For ginsenoside Rb1 (3.2.1.192), quercetin- 3- glucoside (3.2.1.21), and cycasin (3.2.1.21), 
SIMMER accurately predicted EC codes out to sub- sub- class (3.2.1.-), serial designation (3.2.1.21), 
and sub- sub- class (3.2.1.-), respectively, which was a resolution improvement over DrugBug (Table 
1—source data 1).

We next queried the 30 EC annotated drug metabolism positive controls against MicrobeFDT, a 
chemical graph tool that only predicts EC codes, not enzyme sequences. MicrobeFDT produced EC 
predictions for 14 of the 30 positive controls, four of which were correct (29% accuracy). We finished 
the comparison between SIMMER and MicrobeFDT by querying SIMMER with the metabolism use- 
case described in the MicrobeFDT publication, altretamine demethylation. In our hands, there was no 
Cypher query against the MicrobeFDT database that resulted in a demethylase EC code (we determined 
possible demethylase EC codes by running a query in the Swiss Institute for Bioinformatics Enzyme 
Nomenclature Database) (Bairoch, 2000). We performed queries of direct EC annotation for melamine 
and altretamine, as well as EC annotation queries for any compound with either substructure or toxicity 
overlap with altretamine or melamine. The closest result to a demethylase enzyme was a cypher query of 
toxicity overlap with altretamine that yielded a nitric oxide synthase (EC 1.14.13.39) acting on L- arginine 
among its results (Table 1—source data 1). For its significant EC (reaction type) prediction, SIMMER 
identified altretamine demethylation appropriately as an oxidoreductase reaction acting on a CH- NH 
group of donors (EC 1.5.-), but not significantly as a demethylation event (Table 1—source data 1).

Neither DrugBug nor MicrobeFDT computed predictions for all 33 positive control reactions. 
MicrobeFDT made so few EC predictions (14/30) because it is reliant on a fixed chemical database 
that cannot be modified by the user, meaning that a compound cannot be queried if it is not already 
present in MicrobeFDT’s graph. While DrugBug does allow for novel chemical input, its protein data-
base only contains information from 491 bacterial genomes (in comparison to SIMMER’s 286,997 
genomes), affecting its ability to make enzyme- specific predictions.

In instances when DrugBug and MicrobeFDT did make predictions, they suffered from low accu-
racy (Table 1), which we hypothesized was due to both methods’ reliance on substrate rather than 
reaction chemistry. Biotransformations involve the relationship between substrate(s), cofactor(s), and 
an enzyme to yield a particular product(s). As one substrate can exhibit affinity for multiple enzymes, 
resulting in multiple unique products, sole employment of substrates in a chemical fingerprint does 
not achieve the resolution necessary to make relevant predictions. To test if SIMMER’s better perfor-
mance could be attributed to including cofactors and products, we modified our code to run with a 
chemical representation that includes only the substrate of each positive control reaction. Enzyme 
prediction accuracy dropped from 88% down to 33%, and EC prediction accuracy dropped from 
93% down to 48% (Table 1—source data 1), supporting the hypothesis that SIMMER’s better perfor-
mance when compared to DrugBug and MicrobeFDT is due in large part to our use of chemical 
representations that include the full reaction. These results are in line with our previous demonstration 
that SIMMER clusters enzymatic reaction chemistry only when a full reaction is employed (Figure 2, 
Figure 2—figure supplement 4).

Altogether, these findings illustrate SIMMER’s enhanced accuracy over other methods for the 
use- case of characterized drug metabolism events by gut bacteria, and also illustrate SIMMER’s 
novel ability to predict species and enzymes responsible for chemical transformations not previously 
described in literature or databases.

https://doi.org/10.7554/eLife.82401
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SIMMER predicts novel drug-metabolizing enzymes
After establishing SIMMER’s accuracy in predicting drug- metabolizing enzymes in the human gut 
environment, we predicted EC codes, functional annotations, and enzyme sequences for novel 
microbiome drug metabolism reactions that do not yet possess a responsible, characterized enzyme 
(Figure 6—source data 1). From our literature curation of 300 non- antibiotic therapeutics affected by 
the microbiome (Supplementary file 1), we were confident that 88 are directly metabolized by gut 
bacteria due to their association with an identified bacterial metabolite in the literature. We formatted 
these 88 reactions in SMILES format and input them as queries to SIMMER.

Of the 88 reactions queried, SIMMER determined significant EC predictions for 75 reactions 
(86.2%), and 61 (70.1%) of these were out to the serial designation (i.e., highest resolution) EC code 
(Figure 6—source data 1). This list of 61 transformations presents reactions for which we believe 
enzyme characterization is worth pursuing as our predictions are significantly similar to enzymes 
already explored in the literature. SIMMER’s EC predictions resulted in expanded and diversified 
EC class membership for drug transformations known to occur in the microbiome (Figure 6C). Of 
interest, this analysis resulted in a large expansion of putative hydrolysis, reduction, and isomerization 
reactions in the human gut microbiome. The number of SIMMER predictions varies widely by reaction, 
with median output of 372 genes, 286 genomes, and 10 phyla predicted as responsible across the 88 
reactions (Figure 6—source data 1, Figure 6A). Unsurprisingly, many of these reactions are predicted 
to occur due to enzymes found in Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, but 
there are also SIMMER enzyme predictions in phyla not previously associated with drug metabolism 
(Figure 6B).

Experimental validation of SIMMER predictions: MTX case study
Among the 88 uncharacterized reactions, we assessed SIMMER’s ability to predict strains and enzymes 
for the hydrolysis of MTX. Oral MTX is an anti- folate immunosuppressant, and the first- line therapy 
for individuals with rheumatoid arthritis (RA). About half of RA patients, however, show inadequate 
response to MTX (Scher et al., 2020), and the reasons for this remain incompletely understood. This 
lack of efficacy may be due to altered pharmacokinetics, as oral bioavailability of MTX is subject to 
large inter- individual variation with values ranging from 32% to 70% (Roon and Laar, 2006). MTX is 
estimated to undergo extensive enterohepatic circulation, which results in increased exposure to gut 
bacteria in the small intestine (Roon and Laar, 2006). This exposure may result in MTX depletion, as 
it is known that MTX degrades to inactive metabolites 2,4- diamino- N10- methylpteroic acid (DAMPA) 
and glutamate in mice with intact gut microbiomes, but not in their antibiotic treated counterparts 
(Zaharko et al., 1969). In a recent human study, ex vivo stool samples from MTX non- responders 
depleted MTX to a higher degree, though the relevant strains and enzymes were not determined 
(Artacho et al., 2021).

When queried with MTX and its gut bacteria associated metabolites DAMPA and glutamate, 
SIMMER calculated a most similar MetaCyc reaction (3.4.17.11- RXN) and a significant EC prediction 
(3.4.17.11, p- value <0.001). This MetaCyc reaction describes the hydrolysis of folate into pteroate 
and glutamate, driven by a glutamate carboxypeptidase (Cpg2) found in environmental Pseudo-
monas aeruginosa. Hydrolysis of MTX is chemically similar to hydrolysis of folate (Figure 7A) with 
a Tanimoto coefficient = 0.6, and normalized euclidean distance = 0.05 in SIMMER’s precomputed 
chemical space. SIMMER made 2286 human gut microbiome enzyme predictions for degrading MTX 
into DAMPA and glutamate (Figure 7—source data 1). The most common Prokka annotation for 
these enzymes is Carboxypeptidase G2s (Figure 7B) due to their sequence similarity to MetaCyc’s 
environmental Cpg2. Furthermore, SIMMER’s predicted enzymes had a median global identity of 
33% to Pseudomonas sp. RS- 16 (an environmental bacterium) Cpg2, an enzyme known to conduct 
hydrolysis of MTX (Larimer et al., 2014; Jeyaharan et al., 2016). This similarity suggests that some 
of SIMMER’s predicted enzymes conduct hydrolysis of MTX, similar to P. aeruginosa’s Cpg2 reaction.

We next screened an existing collection of 42 diverse bacterial strains found in the human gut for 
its ability to deplete MTX. This collection was of interest due to previously determined inter- strain 
variation in growth inhibition by MTX (Nayak et al., 2021). Each isolate was incubated with MTX 
(100 μg/ml), and MTX levels were determined by high- performance liquid chromatography (HPLC) 
(Figure 8). MTX depletion varied across the strain collection, with 10 isolates exhibiting at least a 
50% decrease in MTX levels compared to control. There was a statistically significant concordance 

https://doi.org/10.7554/eLife.82401
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Figure 6. SIMMER predicts novel drug metabolizing enzymes. (A) Distributions depict the unique number of genes, strains, and phyla predicted to 
be responsible for 88 reported drug transformation reactions, as well as predicted gene functions. (B) A heatmap illustrating, for a given phylum, the 
number of unique drug- metabolizing enzymes predicted to conduct 88 different drug metabolism events. (C) Enzyme Commission Class representation 

Figure 6 continued on next page
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between SIMMER’s predictions of which strains had an enzyme capable of metabolizing MTX and our 
experimental results (Fisher’s exact test, odds ratio = 5.4, p- value <0.05, Figure 8). We next examined 
the seven strains for which SIMMER predicted capability to perform MTX hydrolysis but where we did 
not observe decreased drug levels. One of these discordant strains, E. coli BW25113, possesses the 
multidrug resistance efflux pump AcrAB- TolC, which actively exports MTX (Kopytek et al., 2000), 
explaining why MTX was not affected. To test if other discordant strains possessed orthologs of this 
efflux pump, we looked for AcrAB sequences in the genomes of all 42 bacterial strains. We found two 
more discordant strains with AcrAB genes: Edwardsiella tarda and Providencia rettgeri (Figure 8). 
Thus, 3/7 SIMMER predictions that did not match experimental results could be explained by the 
ability of drug efflux to mask the potential for enzymatic activity.

As an additional comparison to DrugBug and MicrobeFDT, we assessed MTX metabolism with 
both tools. Both incorrectly predicted that MTX degradation is through transferases rather than 
hydrolases. Because DrugBug also provides species and enzyme predictions, we assessed its ability 
to predict species responsible for MTX metabolism. We found that only SIMMER was able to signifi-
cantly predict species capable of MTX metabolism (SIMMER odds ratio = 5.4 versus DrugBug odds 
ratio = 0). DrugBug produced zero true positives and predicted that MTX metabolism was a feature 
largely restricted to members of Bacteroidetes, a group who exhibited no activity in our in vitro assay 
(Figure 8—figure supplement 1).

Evaluation of SIMMER on external datasets
We next sought to determine the relationship between abundance of SIMMER predicted MTX- 
metabolizing enzymes and clinical response in patients. We took advantage of a publicly available 
dataset in which fecal samples from treatment- naive new- onset RA patients were profiled using 
shotgun sequencing; these same patients were followed for 4 months and MTX responder status and 
disease activity (DAS28) were assessed by the authors (Artacho et al., 2021). Response was defined as 
a DAS28 score improvement of at least 1.8 points at 4 months of MTX therapy (Artacho et al., 2021). 
Of SIMMER’s 2286 enzyme predictions for MTX hydrolysis, 386 were detected in the fecal samples of 
RA patients at baseline (prior to treatment). MTX non- responders exhibited a significant enrichment 
of SIMMER MTX predictions in their stool samples (Figure 9A). Similarly, a significant negative correla-
tion was seen between patients’ disease score improvements and abundance of SIMMER enzyme 
predictions (Figure 9B). These data, combined with our HPLC validation and prior ex vivo incubations 
linking non- response to increased MTX metabolism (Artacho et al., 2021), emphasize the utility of 
using SIMMER to uncover clinically relevant drug–microbe interactions.

Next, we sought experimental evidence for other novel transformations with SIMMER predictions. 
The side- chain cleavage of dexamethasone to 17- oxodexamethasone is one example. Dexamethasone 
was recently shown to be metabolized solely by Clostridium scindens (ATCC 35704) out of a collection 
of 76 isolates representative of the human gut microbiome (Zimmermann et al., 2019b). When the 
authors assessed dexamethasone metabolism in 28 shotgun sequenced human stool samples, metab-
olite formation varied substantially by individual, but could not be explained by C. scindens species 
abundance. To explore this lack of correlation in light of our findings, we assessed the abundance of C. 
scindens SIMMER enzyme predictions (Figure 10—source data 1) within each of the 28 samples (i.e., 
the number of C. scindens SIMMER enzyme predictions aligned to each sample’s shotgun sequencing 
reads) rather than each sample’s C. scindens species relative abundance. We found a significant 
association between metabolite formation and number of SIMMER enzyme aligned reads, and also 
a significant association between parent compound consumption and number of SIMMER enzyme 
aligned reads (Figure 10B). This underscores the importance of identifying an enzyme and quantifying 
its presence in metagenomic data.

for bacterial transformations of therapeutics before and after the employment of SIMMER. Our predictions greatly expand the number of characterized 
reduction (EC1), hydrolysis (EC2), and isomerization (EC5) events and modestly increase the number of transferase (EC2) and lyase (EC4) events.

The online version of this article includes the following source data for figure 6:

Source data 1. SIMMER's enzyme predictions (with phyogenetic annotations) and EC predictions for 88 previously uncharacterized reactions.

Figure 6 continued
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Figure 7. SIMMER predicts methotrexate (MTX) metabolizing enzymes similar to known environmental MTX metabolizers. (A) When queried with MTX 
hydrolysis to 2,4- diamino- N10- methylpteroic acid (DAMPA) and glutamate, SIMMER found that folate hydrolysis was the most chemically similar MetaCyc 
reaction. (B) SIMMER predicted 2286 unique bacterial sequences putatively capable of MTX hydrolysis to DAMPA and glutamate. There was great 
variability in the prevalence and abundance of these sequences in healthy human metagenomic data. Among the strains with predictions, Firmicutes 
were most common. The most frequent Prokka annotation was Carboxypeptidase G2.

The online version of this article includes the following source data for figure 7:

Source data 1. SIMMER's enzyme prediction output table for MTX hydrolysis to DAMPA and glutamate: 2,286 bacterial sequences and their UHGG 
database identifiers, taxonomy, predicted function, and prevalence and abundance in healthy humans.

https://doi.org/10.7554/eLife.82401
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Figure 8. SIMMER accurately predicted bacterial strains capable of methotrexate (MTX) depletion. A diverse panel of 42 isolates was incubated with 
MTX, and depletion (yes/no) measured via HPLC (50% decrease relative to sterile controls). SIMMER predicted (yes/no) that 13 of the 42 isolates were 
capable of MTX metabolism, and HPLC experiments showed that 10 isolates depleted MTX (SIMMER prediction p- value = 0.046, Fisher’s exact test). 

Figure 8 continued on next page
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It came to our attention while preparing this manuscript that recombinant steroid- 17,20- desmolase 
(DesAB) enzymes from C. scindens were shown to perform side- chain cleavage on prednisone, but 
also to a lesser extent on dexamethasone. DesAB’s reduced activity for dexamethasone was assumed 
to be due to the compound’s potentially inhibitory 16α-methyl group (Ly et al., 2020). To ensure 
that SIMMER’s enzyme prediction for dexamethasone cleavage was not enriched in metabolizing 
stool samples due to co- occurrence with already known DesAB, we next assessed the abundance of 
desAB reads across the 28 samples and found no significant correlation between number of reads 
and either metabolite formation or dexamethasone consumption slopes (Figure 10—figure supple-
ment 1). These results indicate that species- level information alone is not enough to predict chemical 
transformations in a microbiome sample, but with SIMMER, knowledge of responsible enzymes can 
recapitulate a sample’s potential for therapeutic degradation.

The maximum likelihood phylogenetic tree (PhyML) was created using 16S rRNA gene sequences from the 42 organisms’ closest representatives in the 
Greengenes database.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Identifiers and assembly file names for 42 isolates incubated with MTX, and example HPLC traces from two MTX depleting strains.

Figure supplement 1. DrugBug methotrexate (MTX) metabolism predictions.

Figure supplement 2. Representative methotrexate (MTX) depletion high- performance liquid chromatography (HPLC) traces.

Figure 8 continued

Figure 9. SIMMER enzyme predictions are enriched in methotrexate (MTX) non- responders. N = 368 of SIMMER predicted sequences for MTX 
hydrolysis were found in new- onset RA patients with variable MTX response. (A) SIMMER enzyme predictions (normalized by read depth) were enriched 
in MTX non- responders (Generalized Linear Model (GLM) Poisson, p- value = 0.001), and (B) a significant negative association between disease severity 
improvement and number of SIMMER enzyme predictions (normalized by read depth) was observed (Pearson correlation = −0.4, Student’s t- test p- value 
= 0.01).

The online version of this article includes the following source data for figure 9:

Source data 1. Disease activity (DAS28) scores, MTX response status, and number of SIMMER predicted enzymes for RA patients.

https://doi.org/10.7554/eLife.82401
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Figure 10. SIMMER predicted enzymes explain inter- individual variations in drug metabolism. (A) Donors (N = 20) from the Javdan et al. 16S rRNA gene 
sequencing study (Javdan et al., 2020) possessed an enrichment of genomes harboring SIMMER enzyme predictions when metabolism of a given drug 
was observed. Violin plot curves were made using a seaborn package that performs a kernel density estimation of the underlying datapoint distribution. 
Chemical transformations were drawn using ChemDraw software. Single asterisks denote p- values ≤0.05, and double asterisks denote p- values ≤0.01 
(t- test). (B) There was a significant correlation between a human stool sample’s ability to consume dexamethasone (consumption slope, a.u.), to produce 
17- oxodexamethasone (production slope, a.u.), and the number of aligned SIMMER predicted sequences for side- chain cleavage of dexamethasone. 
Patient (N = 28) conversion slopes and metagenomics data were accessed from the original study (Zimmermann et al., 2019b). Chemical structures 
were drawn using ChemDraw software.

The online version of this article includes the following source data and figure supplement(s) for figure 10:

Figure 10 continued on next page
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Lastly, eight of the 88 novel transformations were among those investigated in a high- throughput 
study exploring the metabolism of 571 compounds in ex vivo stool samples (Javdan et al., 2020). This 
publication demonstrated bacterial degradation of 57 therapeutics in a single pilot donor stool sample 
(with associated shotgun sequencing), as well as in 20 human stool samples (with associated 16S rRNA 
gene sequencing). While this study greatly expanded the number of drugs known to break down in 
the presence of gut bacteria and identified eight metabolite structures, it only identified a respon-
sible enzyme in two of the 57 drug degradation cases due to the low- throughput nature of enzyme 
characterization. To further assess SIMMER’s ability to predict novel enzymes, and to demonstrate the 
utility of using SIMMER in an experimental context, we investigated the presence of our predictions in 
the Javdan et al. study sequencing results. Because shotgun metagenomics sequencing for the pilot 
donor was deposited, we were able to confirm via tBLASTn searches that SIMMER enzyme predic-
tions were directly found in the pilot donor stool sample for all eight of the reactions with identified 
metabolites (Figure 10—source data 1). However, the sequencing data from the 20 human donor 
study were only 16S profiling, so we were unable to look directly for SIMMER enzyme predictions. 
We instead ensured that genomes found in metabolizing stool samples were SIMMER species predic-
tions. We found that donors who could metabolize a given drug possessed a significant enrichment 
of species predicted by SIMMER. This was the case for five out of the six reactions analyzed (Figure 
10—source data 1, Figure 10A). This result validates SIMMER’s ability to predict species potentially 
able to perform a queried metabolic reaction, though additional data would be needed to confirm 
that the strains in these 20 donors had the predicted enzyme.

SIMMER software
In addition to providing SIMMER (https://github.com/aebustion/SIMMER, copy archived at Bustion, 
2023) as a command- line tool that quickly generates enzyme sequence predictions (fasta and tab- 
separated- value files), EC predictions (tab- separated- value file), and MetaCyc reactions ranked by 
similarity (tab- separated- value file) based on a user’s input reaction, SIMMER is also available as a user- 
friendly website (https://simmer.pollard.gladstone.org/). The user can either input one query reaction 
at a time or upload multiple reactions in tsv file format (Figure 11). All output types available with the 
SIMMER command- line tool are likewise retrievable via the SIMMER website. SIMMER’s underlying 
chemical and protein databases will be updated whenever major releases of MetaCyc that result in 
new enzyme- annotated reactions are released (estimated to be once a year).

Discussion
In this work, we created a tool that appropriately describes reaction chemistry and harnesses all current 
information on gut bacterial sequences, both from isolates and metagenome assembled genomes. 
This advances our ability to discover the genetic determinants of human microbiome chemical trans-
formations, because previous methods for in silico metabolism prediction had several key limitations, 
including low accuracy. Here, we demonstrated SIMMER’s ability to recover known drug- metabolizing 
enzymes in the human gut, performed the first species- level characterization of MTX metabolism by 
bacteria in the human gut microbiome, and extended previous experimental findings for multiple 
drug metabolism events by identifying candidate species and enzymes.

To describe chemical reactions, we were initially influenced by recent research that employed 
substrate and product chemistry to compare bacterial- drug metabolism events to primary reactions 
in the MetaCyc database, but without the end goal of EC and enzyme identity prediction (Mallory 
et al., 2018). From a reaction description standpoint, the published method was still limited in that it 
only included a description of one substrate and one product per reaction, precluding it from utilizing 
cofactors and from accurately describing anything other than intramolecular rearrangements (EC class 
5, Figure 2—figure supplement 4). For this reason, we employed a chemical representation tech-
nique that can describe multiple inputs and outputs for a single reaction (Schneider et al., 2015).

Source data 1. SIMMER predictions for previously published drug metabolism studies.

Figure supplement 1. Dexamethasone metabolism is not significantly correlated with presence of desAB.

Figure 10 continued
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To connect these chemical descriptions to bacterial proteins in the human gut, we knew it was 
important not to rely on EC codes (as previous methods have done) to find relevant enzyme sequences. 
While EC codes are helpful for describing reaction types, they are not sufficient for predictions of 
microbiome orthologs due to the paucity of functional annotations in microbiome datasets (Almeida 
et al., 2021; Thomas and Segata, 2019). Even when present, EC entries are sometimes incomplete, 
with about 36% of assigned EC numbers lacking either a gene or protein sequence (Pouliot and Karp, 
2007). Lastly, EC nomenclature fails to adequately express the complexity of peptidase enzymes (EC 
3.4, about 10% of the enzymes currently classified by EC). All peptidases catalyze a nearly identical 
reaction, hydrolysis of a peptide bond, and as a result, the EC has lumped peptidases of diverse func-
tions into only a few low- resolution sub- classes (McDonald and Tipton, 2023; McDonald and Tipton, 
2014). For these reasons, we instead chose to create sequence searches of large genome databases 
directly from enzymes known to conduct chemically similar reactions, whether or not they have been 
fully annotated with an EC code.

When comparing database entries based on sequence similarity, the algorithm employed plays 
a critical role. Homology searches in pharmacomicrobiomics research are often conducted using 

Figure 11. SIMMER web tool. The landing page for the SIMMER website (https://simmer.pollard.gladstone.org/) allows the user to upload a TSV file of 
queries or add a single query manually to run SIMMER on. It is recommended to use the command- line tool (https://github.com/aebustion/SIMMER; 
Bustion, 2023) for more than 10 input queries.

https://doi.org/10.7554/eLife.82401
https://simmer.pollard.gladstone.org/
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pairwise search algorithms such as BLAST (Altschul et al., 1990). A limitation of this method is that 
substitutions, deletions, and insertions are penalized by a set amount, regardless of where in the 
alignment they occur. For a given collection of functional enzymes, however, sequence conserva-
tion varies at different sites in the protein, as a result of differing strengths of selection pressures 
on different residues (i.e., high conservation at active sites versus low conservation in disordered 
domains). This position- specific information can be leveraged by performing homology searches with 
pHMMs, which encode protein family evolutionary patterns present in a multiple sequence align-
ment (Eddy, 1998). In the antibiotic resistance protein space, for example, pHMMs that incorporate 
position- specific information have found distant homologs with retained function not recovered via 
pairwise search methods (Gibson et al., 2015). pHMM searches are an improvement over BLAST from 
the standpoint of finding distant homologs and from the standpoint of finding targets with retained 
activity, as previous research has shown that global sequence identity does not necessarily map to 
similar function (Gerlt et al., 2012; Koppel et al., 2018). While an improvement, pHMM methods can 
still be uncorrelated with functional similarity and SIMMER enzyme predictions will include many false 
positives and require experimental validation. The goal of SIMMER, therefore, is to prioritize and limit 
the set of possible experiments one might do rather than to replace experiments.

SIMMER achieved high accuracy when applied to known drug metabolism events in the gut micro-
biome. Correct EC designations and enzyme sequences were recovered for 33 drug metabolism 
events previously characterized in microbiome literature. These reactions span multiple EC classes, 
and were described by multiple publications, demonstrating the wide application and accuracy of 
SIMMER. While SIMMER provides accurate (i.e., true positive) enzyme predictions for chemical trans-
formations in the human gut, the potential for false positives may be high, as its enzyme lists are 
not filtered by biologically relevant metrics like substrate affinity or flux consistency in a microbial 
community. To the former point, users may wish to employ tools like Similarity Ensemble Approach to 
narrow in on hits most likely to interact with compounds of interest (Keiser et al., 2007). To the latter, 
a user could choose to further analyze their SIMMER output for flux balance if the predicted SIMMER 
bacterial species are described in current metabolic reconstruction models (Heinken et al., 2020; 
Magnúsdóttir et al., 2017).

Due to its accurate predictions of previously described drug- metabolizing bacterial enzymes, we 
also used SIMMER to identify previously unknown bacterial species and enzymes at play in known 
gut microbiome drug transformations. Recent high- throughput experimental research has greatly 
increased our knowledge of the number of drugs altered by bacteria in the human gut, but has led 
to a bottleneck in identifying the responsible bacterial enzymes. While direct experimentation is a 
necessary component to elucidating the bacterial players responsible, in silico methods like SIMMER 
are needed to help prioritize which of the many bacterial species and enzymes to assess. Here, we 
showed that SIMMER both corroborates previous high- throughput experimental data, and also adds 
increased clarity to the findings. While a previous experimental study was able to elucidate the impor-
tance of an isolate C. scindens in the metabolism of dexamethasone, the abundance of C. scindens in 
human samples did not correlate with metabolism. When assessed with SIMMER, however, a signifi-
cant correlation between metabolite production and abundance of SIMMER enzyme predictions was 
observed. This finding demonstrates that species identity alone is not enough to explain bacterial 
chemical transformation, and that responsible genetic elements must be interrogated as well.

Lastly, we used SIMMER to perform the first species- level characterization of MTX metabolism 
by bacteria in the human gut microbiome. While it has been suspected for some time now that 
inter- individual variation in patient response to oral MTX may be due to bacterial hydrolysis of the 
therapeutic, no characterizations have yet been made of the species of enzymes responsible. We 
demonstrated the utility of using SIMMER in such a use- case. The most similar MetaCyc reaction 
to MTX hydrolysis, folate hydrolysis, that SIMMER identified makes much logical sense based on 
substrate and metabolite structures, and overall reaction chemistry. Further adding confidence to 
SIMMER’s sequence predictions was their enrichment in the shotgun sequenced stool samples of RA 
patients exhibiting little response to MTX treatment. This finding plus our demonstration that human 
gut bacterial species are capable of depleting MTX in isolation provides provides additional support 
for the role of gut bacterial drug metabolism in interfering with the treatment of RA.

Two previous computational tools exist for describing non- antibiotic microbial drug metabolism. 
MicrobeFDT groups thousands of compounds based on their similarity to one another and annotates 
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compound groups based on any known links to EC numbers, and subsequently, microbes known to 
contain such EC codes (Guthrie et al., 2019). This network approach was an important addition to 
the exploration of microbiome metabolism, but its use is limited to a fixed database of chemicals and 
EC annotations which prevents the user from exploring novel chemistry and also from utilizing hypo-
thetical protein data gathered from metagenomic sequencing studies. Furthermore, MicrobeFDT’s 
accuracy within its database of substrates is limited by its exclusive description of substrates rather 
than full reactions. DrugBug, a tool that employs Random Forests rather than a network approach, 
also exhibits limited power and accuracy due to its sole reliance on substrate chemistry and relatively 
small database of only 491 isolated bacterial genomes from the human gut (Sharma et al., 2017). 
Of note, our comparison of SIMMER’s performance to existing methods necessitated downloading 
and analyzing our positive control list against the other tools, as none of the previous publications 
provided any computational validation or accuracy metrics.

One user pitfall of SIMMER in comparison to previous methods, is that a reaction’s product(s) and 
cofactor(s) identity is required to achieve the high accuracy enzyme predictions described here. This 
is a limitation, as a growing amount of liquid chromatography–mass spectrometry (LC–MS)/MS data in 
microbiome research only reports whether or not a compound is depleted in the microbiome and the 
mass/charge ratio of the product formed, not the product identity. While it is technically possible for 
the user to submit a SIMMER query that only consists of a substrate, or uses a compound identity as 
both substrate and product, we do not recommend this due to the previously discussed lack of accu-
racy when only considering substrates (Figure 2—figure supplement 4, Table 1—source data 1). 
For users wishing to utilize SIMMER with a compound of interest and its either unknown or uncharac-
terized products, additional tools such as BioTransformer could be used in tandem to create product 
template predictions before querying (Djoumbou- Feunang et al., 2019). Lastly, if the user does not 
hold a certain level of knowledge in chemistry, appropriate cofactors (such as water employed in a 
hydrolysis event) might be omitted from a query, leading to lower accuracy predictions. If a user is 
unsure which cofactors may be at play in their reaction of interest, reaction rules tools such as Retro-
Rules could be employed (Duigou et al., 2019).

Another limitation of SIMMER is that its underlying protein data is solely metagenomics data from 
the human gastrointestinal tract, but some compounds, such as the vaginal gel tenofovir, are known to 
be altered by bacteria in non- GI tract settings (Klatt et al., 2017). That being said, for transformations 
in the human gut, SIMMER employs the largest available database of relevant bacterial sequences, 
and the tool could easily be expanded in the future to include other human body sites as well as 
non- host associated environments. Further related to database constraints, while SIMMER is novel in 
its ability to query reactions not previously described in chemistry databases, its search space is still 
limited to reactions that broadly relate to those captured in MetaCyc. While MetaCyc is the largest 
annotated bacterial reaction database to date (Altman et al., 2013; Caspi et al., 2020), it likely only 
represents a fraction of the still underexplored microbiome catalyzed biotransformation space. Addi-
tionally, the chemistry present in MetaCyc is not restricted to anaerobic organisms such as the bacteria 
found in the human gut. As MetaCyc expands, or additional databases get employed, SIMMER will be 
able to make increasingly fine- tuned predictions.

SIMMER enters microbiome biotransformation research at an important point: while there are 
hundreds of microbiome altered compounds which are in need of enzyme identification, there are also 
a sufficient number with characterized enzymes to enable us to test the tool’s accuracy. Its ability to 
predict these known enzymes accurately builds confidence for its predictions of yet unknown enzymes. 
With this tool in hand, microbiome researchers can make informed hypotheses before embarking on 
the lengthy laboratory experiments required to characterize novel bacterial enzymes that can alter 
human ingested compounds. Continued refinement of SIMMER and other computational tools will 
accelerate microbiome research, providing data- driven hypotheses for experimental testing and a first 
step toward understanding the full scope of metabolism by the human microbiome.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Chemical compound, drug Methotrexate Sigma- Aldrich M9929- 100MG

https://doi.org/10.7554/eLife.82401
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Bacteroides 
thetaiotaomicron) Bacteroides thetaiotaomicron DSM 2079

Strain, strain background (Clostridium 
asparagiforme) Clostridium asparagiforme DSM 15981

Strain, strain background (Clostridium 
sporogenes) Clostridium sporogenes ATCC 15579

Strain, strain background (Clostridium 
symbiosum) Clostridium symbiosum DSM 934

Strain, strain background (Akkermansia 
muciniphila) Akkermansia muciniphila DSM 22959

Strain, strain background (Alistipes shahii) Alistipes shahii DSM 19121

Strain, strain background (Bacteroides caccae) Bacteroides caccae DSM 19024

Strain, strain background (Bacteroides 
eggerthii) Bacteroides eggerthii DSM 20697

Strain, strain background (Bacteroides 
finegoldii) Bacteroides finegoldii DSM 17565

Strain, strain background (Bacteroides fragilis) Bacteroides fragilis DSM 2151

Strain, strain background (Bacteroides ovatus) Bacteroides ovatus DSM 1896

Strain, strain background (Bacteroides stercoris) Bacteroides stercoris DSM 19555

Strain, strain background (Bacteroides 
uniformis) Bacteroides uniformis DSM 6597

Strain, strain background (Bacteroides vulgatus) Bacteroides vulgatus DSM 1447

Strain, strain background (Bacteroides 
xylanisolvens) Bacteroides xylanisolvens DSM 18836

Strain, strain background (Bifidobacterium 
longum) Bifidobacterium longum subsp longum DSM 20219

Strain, strain background (Blautia producta) Blautia producta DSM 3507

Strain, strain background (Clostridium 
innocuum) Clostridium innocuum DSM 1286

Strain, strain background (Clostridium scindens) Clostridium scindens DSM 5676

Strain, strain background (Collinsella 
aerofaciens) Collinsella aerofaciens DSM 3979

Strain, strain background (Dorea 
formicigenerans) Dorea formicigenerans DSM 3992

Strain, strain background (Dorea longicatena) Dorea longicatena DSM 13814

Strain, strain background (Edwardsiella tarda) Edwardsiella tarda ATCC 23685

Strain, strain background (Eggerthella lenta) Eggerthella lenta 1- 3- 56 DSM 110906

Strain, strain background (Eggerthella lenta) Eggerthella lenta DSM 2243

Strain, strain background (Eggerthella sinensis) Eggerthella sinensis DSM 16107

Strain, strain background (Eggerthella sp.) Eggerthella sp. DSM 11767

Strain, strain background (Enterococcus faecalis) Enterococcus faecalis DSM 2570

Strain, strain background (Escherichia coli) Escherichia coli BW25113 DSM 27469

Strain, strain background (Eubacterium eligens) Eubacterium eligens DSM 3376

Strain, strain background (Eubacterium hallii) Eubacterium hallii DSM 3353

Strain, strain background (Eubacterium rectale) Eubacterium rectale DSM 17629

 Continued on next page
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Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Faecalibacterium 
prausnitzii) Faecalibacterium prausnitzii DSM 17677

Strain, strain background (Fusobacterium 
nucleatum)

Fusobacterium nucleatum subsp. 
nucleatum DSM 15643

Strain, strain background (Gordonibacter 
pamelae) Gordonibacter pamelae DSM 110924

Strain, strain background (Lactococcus lactis) Lactococcus lactis DSM 20481

Strain, strain background (Lactonifactor 
longoviformis) Lactonifactor longoviformis DSM 17459

Strain, strain background (Parabacteroides 
distasonis) Parabacteroides distasonis DSM 20701

Strain, strain background (Parabacteroides 
merdae) Parabacteroides merdae DSM 19495

Strain, strain background (Prevotella copri) Prevotella copri DSM 18205

Strain, strain background (Providencia rettgeri) Providencia rettgeri DSM 4542

Strain, strain background (Ruminococcus 
obeum) Ruminococcus obeum DSM 25238

Preparation of SIMMER’s underlying chemical data
13,387 gene- annotated, enzyme- driven bacterial reactions were downloaded from MetaCyc version 
24.1 (Caspi et al., 2008). Each reaction contained Simplified Molecular Input Line Entry System strings 
(SMILES) of reactant(s) and product(s) and UniProt or Entrez identifiers for sequences that catalyze 
the reaction (we also had access to an expanded list of sequence annotations for these reactions 
from a personal correspondence with Peter Karp of MetaCyc). All MetaCyc compounds were then 
protonated based on the pH environment of 7.4 in the human small intestine, where most oral drug 
absorption occurs. Protonation states were calculated using ChemAxon’s cxcalc majorms software 
(ChemAxon, 2023 ).

RDKit’s rdChemReactions module was employed to create chemical fingerprints representing each 
MetaCyc reaction. Chemical reaction objects were constructed from reaction SMILES arbitrary target 
specification (SMARTS) strings. Fingerprints for these reactions were then created using the resulting 
difference of product(s) and reactant(s) Atom- Pair fingerprints (Schneider et al., 2015). SIMMER users 
can also opt to use Topological Torsion, Pattern, or RDKit fingerprints, but unless otherwise stated, all 
analyses in this manuscript use Atom- Pair difference fingerprints. Of the 13,387 MetaCyc reactions, 
8914 were able to be fingerprinted using this method. Failed fingerprints were due to ambiguous 
SMILES identifiers or presence of non- small- molecule compounds in a reaction, such as peptides.

After creating fingerprint vectors for all MetaCyc reactions, an 8914 by 8914 pairwise similarity 
matrix of Tanimoto coefficients was created. These Tanimoto vectors make up SIMMER’s underlying 
chemical data.

Preparation of SIMMER’s underlying protein data
For each of the 8914 fingerprinted MetaCyc reactions, all relevant gene sequences were retrieved 
from the MetaCyc reaction’s UniProt and Entrez database linkouts and additional sequence data 
acquired from Peter Karp at MetaCyc. If at least two genes, with a median pairwise sequence simi-
larity greater than or equal to 27%, were linked to a given MetaCyc reaction, the sequences were used 
to create a multiple sequence alignment and subsequent pHMM using Clustal Omega and HMMER3 
(version 3.2.1) software, respectively (Eddy, 2009; Sievers and Higgins, 2014). This similarity cutoff 
was chosen based on previous protein family literature (Mi et al., 2021). If fewer than two genes, or 
genes with less than 27% global similarity, were associated with a given MetaCyc reaction, a pHMM 
of the MetaCyc gene(s) PANTHER subfamily was retrieved via InterPro linkouts (Mi et  al., 2021). 
MetaCyc derived and PANTHER subfamily pHMMS were then queried against a UHGG collection of 
286,997 isolate genomes and metagenome assembled genomes from the human gut environment 
using the HMMER3 hmmsearch module (Almeida et al., 2021; Eddy, 2009). In the case of MetaCyc 
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reactions with too few sequences, too low a median pairwise sequence identity, and a missing 
PANTHER database subfamily pHMM, single sequence protein queries were conducted against the 
UHGG databse using HMMER3’s phmmer module, which internally created protein profiles for the 
single query sequences based on a position- independent scoring system. Resulting enzyme hit lists 
were filtered to only include high significance hits (e- value < 1E − 5, and hit length ≥ half of the input 
pHMM alignment or single sequence length). In sum, for each MetaCyc reaction, a profile repre-
senting the diversity of the enzyme family for that chemical transformation was used to find sequence 
similar hits in the human gut microbiome that can mediate chemically similar reactions.

Each human gut microbiome hit was further described by the identity, prevalence, and abundance 
of the bacterial strain in which it resides. To establish prevalence and abundance of UHGG strains, 
metagenomic analysis was performed on the Predict (Personalized Responses to Dietary Composition 
Trial) cohort due to its high number of samples and favorable sequencing depth (Asnicar et al., 2021). 
Shotgun metagenomic reads were analyzed with MIDAS2 an implementation of Metagenomic Intra- 
Species Diversity Analysis Subcommands (MIDAS) (Nayfach et al., 2016; Zhao et al., 2022) designed 
for the UHGG database. Presence of a SIMMER predicted species in a given sample was established 
when reads mapped (HS- BLASTN) to 15 single- copy universal genes for that species (Chen et al., 
2015), with at least 75% alignment coverage. To assess the gene content of a sample, shotgun metag-
enomic reads were aligned to a MIDAS2 created pangenome of the SIMMER species’ genes clustered 
at 99% nucleotide identity. Copy number of a SIMMER gene prediction was established by dividing 
aligned prediction reads by the full length of the prediction. This number was then normalized by the 
read coverage of 15 single- copy universal genes in the same sample to estimate copy number per 
cell. Presence of a SIMMER enzyme was established if at least 0.35 gene copies per cell were present 
in a sample.

Phylogenetic trees were also constructed for each hmmsearch and phmmer result. For each set 
of MetaCyc reaction human gut microbiome enzyme hits, CD- HIT was used to cluster results at 95% 
identity (Fu et al., 2012). Then MUSCLE was used to create a multiple sequence alignment for input 
to FastTree (Edgar, 2004; Price et  al., 2009). Compact tree visualizations were made in R using 
ggtree and ggtreeExtra (Xu et al., 2021; Yu et al., 2017). All tree tips were colored by phylum and 
surrounded by circle annotators describing a given hit’s Prokka predicted function, genome type (i.e., 
from an isolate or metagenome assembled genome), and prevalence/abundance in the Predict cohort 
(Seemann, 2014).

Query functionality of SIMMER
The query functionality of SIMMER was designed similar to the precomputed chemistry data. After 
receiving an input chemical transformation (or tsv describing multiple input reactions) in the form of 
SMILES, SIMMER fingerprints the reaction(s) and compares it to the precomputed chemical space by 
computing the Tanimoto coefficients between the input(s) and all precomputed reactions. The 8914 
precomputed MetaCyc reaction Tanimoto vectors are then sorted by ascending euclidean distance 
to the query Tanimoto vector. SIMMER by default ranks reactions’ euclidean distances based directly 
on the Tanimoto vectors, but if a user’s inputs require a decrease in computational burden, PCA can 
be employed after similarity matrix creation and before euclidean distance rankings. The number of 
PCs to be used depends on the fingerprint style employed and was determined by the Kaiser crite-
rion. Unless otherwise stated, all analyses in this manuscript employed the full Tanimoto similarity 
matrix with no PCA reduction. Human gut microbiome enzymes that may conduct the input reaction 
are reported from the precomputed UHGG hmmsearch or phmmer results of the closest euclidean 
distance MetaCyc reaction. Significantly enriched EC identities (i.e., reaction types) are also reported.

Reaction type predictions
SIMMER predicts an EC code (i.e., reaction type) for a query reaction if there is an enrichment of a 
particular EC at the top of the reaction list. Enrichment was determined in a manner similar to GSEA 
(Subramanian et al., 2005). For each EC code associated with MetaCyc reactions, an enrichment 
score (ES) was calculated by walking down the ranked list of reactions. Starting with a score of zero, 
each time the given EC is encountered the score increases by one, and each time a different EC is 
encountered the score decreases by one. At the end of this process, each EC receives an ES that is the 
score’s maximum distance from zero after walking through the list (Figure 2—figure supplement 1A). 
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Because the MetaCyc database of reactions is unbalanced in its EC code representation, ES scores for 
a given EC type are divided by the number of times the EC in question occurs in the database. This 
yields a normalized ES (NES) for SIMMER reporting. Significance is established by comparing the true 
NES to the NES achieved from 1000 permutations of a shuffled reaction list (Figure 2—figure supple-
ment 1B, C). When multiple EC codes are predicted as significant, they are ranked in ascending order 
of where in the list of 8914 reactions the NES occurs. This method was verified by subsampling the 
database of MetaCyc reactions to equal numbers (N = 96) of reactions for each EC class, the broadest 
resolution level of an EC code. Each of these subsampled reactions was then queried with SIMMER 
against the entire MetaCyc reaction database to create sorted reaction lists for each query. SIMMER 
predicted an EC code(s) for each reaction based on the most highly enriched EC. SIMMER’s recall, 
precision, and accuracy are high for EC class, sub- class, and sub- sub- class level resolution (Figure 2B, 
Figure 2—source data 1). For the serial designation of an EC code (the most granular description of 
an EC code), however, SIMMER’s performance diminished, potentially because enrichment calcula-
tions suffer from increased uniqueness in the ranked list and therefore reduced power to determine 
a match (Figure 2—source data 1). This indeed appears to be the case; when the database is subsa-
mpled to ensure at least three of each unique serial designation, F1- scores (the harmonic mean of 
precision and recall) and accuracy remain high despite the increased EC resolution (Figure 2—source 
data 1, Figure 2—figure supplement 1D).

Euclidean distance silhouette scores
To analyze SIMMER’s resilience to different reaction chemistry representations, we created a silhouette- 
like euclidean distance score. For the precomputed MetaCyc chemical dataset of 8914 reactions (i.e., 
the Tanimoto pairwise similarity matrix), we split all reactions into their top- level EC codes (i.e., EC 
class) and determined for each reaction its euclidean distance to all reactions within its EC class versus 
outside its EC class. From the two distributions (within EC and without EC distances) created, we 
computed a Kolmogorov statistic to determine if the distributions significantly (p < 0.05) differed. 
We repeated this process for finer resolution EC classifications (sub- class, sub- sub- class, and serial 
designation). Euclidean distance silhouette scores were used to compare different chemical represen-
tations, such as fingerprint style, inclusion of products, and inclusion of cofactors.

Relationship between SIMMER’s underlying chemical and protein data
For MetaCyc enzymes (N = 34,279) associated with multiple reactions, one reaction was used as 
a SIMMER query, and the other reaction(s) searched for in the ordered reaction list output. As a 
negative control, these reaction similarity results were then compared to all pairwise combinations of 
MetaCyc enzymes (subsampled to N = 34,279) that do not conduct the same reaction.

We also assessed the relationship between chemistry and protein similarity for all pairwise combina-
tions of a subset of MetaCyc reactions annotated with only one protein sequence (N = 604 reactions). 
Chemical similarity was based on the Euclidean distance between two reaction fingerprint vectors in 
SIMMER’s precomputed chemical space (Figure 1A). Global protein similarity was determined via the 
Needleman–Wunsch algorithm. The relationship between chemical similarity and protein similarity 
was assessed with a Pearson’s correlation coefficient and p- value calculated using a Wald test with 
t- distribution of the test statistic.

Creating a compendium of drug metabolism use cases from the human 
gut
To analyze SIMMER under the use- case of drug metabolism, we created a compendium of drug 
degradations that occur in the human gut microbiome. The compendium of reactions is based on a 
literature curation of hundreds of papers, and is organized by reactions producing known/unknown 
metabolites and driven by known/unknown bacterial enzymes. The drug metabolism positive controls 
used to assess SIMMER’s accuracy were drawn from the list of reactions possessing a structurally eluci-
dated metabolite and driven by a characterized bacterial enzyme.

We further expanded the positive control list to include sequence similar enzymes that likely 
perform the same function. For this expansion, we performed pHMM searches (when a positive control 
reaction had been characterized with multiple sequence similar enzymes) and phmmer searches (when 
a positive control reaction had been characterized with only one sequence) of the UHGG database 
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using HMMER3 software (Almeida et al., 2021; Eddy, 2009). High significance (e- value < 1E − 5) hits 
were kept when the resulting alignment was at least 50% of the input pHMM or sequence length. 
This list of significant hits was filtered by presence in human ileum or jejunum (the site of human 
drug absorption) via DIAMOND searches against metagenomic reads from a published study that 
employed jejunum and ileum endoscopy (Buchfink et al., 2021; Zmora et al., 2018). The hits were 
also filtered for presence in RNAsequencing data via DIAMOND searches of rnaSPAdes assembled 
reads from HMP2 metatranscriptomics control patient samples (Bushmanova et al., 2019; Integra-
tive HMP (iHMP) Research Network Consortium, 2019). The hits were lastly filtered by predicted 
affinity for their substrates using the Similarity Ensemble Approach (Keiser et al., 2007).

Comparison to existing methods
DrugBug predictions were made using the DrugBug web tool (http://metagenomics.iiserb.ac.in/ 
drugbug/) with default settings. MicrobeFDT predictions were made in two manners: first by looking 
for direct enzyme metabolism events, and second, by looking for enzyme metabolism of compounds 
that overlap chemically with the positive control in question. Cypher query commands used are 
included in Table 1—source data 1.

Analysis of 16S and metagenomics data from Javdan et al.
We analyzed results from sequencing studies (NCBI BioProject: PRJNA593062) described in a previ-
ously published high- throughput investigation of bacterial drug metabolism in human stool samples 
(Javdan et al., 2020). The first sequencing set in this publication was a deep metagenomic sequencing 
of one pilot individual’s ex vivo stool originally evaluated for its ability to degrade hundreds of thera-
peutics. We used MetaSPAdes with default settings to assemble the metagenomics reads into scaffolds 
(Nurk et al., 2017). We then queried SIMMER with eight reactions that were structurally elucidated 
(via nuclear magnetic resonance) by the previous publication, and ensured via TBLASTN searches that 
SIMMER predicted hits were found in the assembled metagenomic reads. The second sequencing set 
was a 16S rRNA sequencing experiment of twenty human donor stool samples originally evaluated 
for their inter- individual variation in bacterial drug degradation. We queried SIMMER with five of 
these reactions possessing structurally elucidated metabolites, and evaluated enrichment of SIMMER 
predicted bacterial species in metabolizing versus non- metabolizing donors. Species matches between 
SIMMER species predictions and the 16S study were made using the SequenceMatcher class from the 
difflib python module set to an 80% ratio cutoff. Enrichment of SIMMER predicted bacterial genomes 
was then assessed by computing a t- test for number of SIMMER genomes in metabolizers versus 
number of SIMMER genomes in non- metabolizers for a given reaction.

Analysis of dexamethasone metagenomics data
For experimental corroboration of dexamethasone metabolism, we accessed shotgun sequencing 
data (PRJEB31790) from a cohort of 28 human stool samples shown to metabolize dexamethasone 
to varying degrees (Zimmermann et al., 2019b). Shotgun reads were assembled using MetaSpades 
with default settings. The metabolism of dexamethasone to 17- oxodexamethasone was input to 
SIMMER with N = 20 reactions output, and a DIAMOND database of all SIMMER enzyme predictions 
from C. scindens was created. Presence of SIMMER enzyme predictions was established via search 
with DIAMOND and normalized by sample read depth. Significance was established with a Pearson’s 
correlation coefficient and p- value calculated using a Student’s t- distribution.

Analysis of RA metagenomics data
The Artacho sequencing study (PRJNA682730) raw reads were assembled using MetaSpades with 
default settings (Nurk et  al., 2017). After assembly, DIAMOND was used to search for SIMMER 
sequences in reads, with presence defined as at least 50% coverage and at least 97% identity. All 
abundance measures were normalized by read depth. Correlation between DAS28 improvement and 
number of aligned SIMMER enzyme predictions was assessed using Pearson’s correlation coefficient 
and p- value calculated using a Student’s t- distribution. Enrichment of SIMMER enzyme predictions in 
MTX responders versus non- responders was assessed using a generalized linear model, glm(count~re-
sponse, family = poisson).
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Bacterial isolate screen for MTX hydrolysis
42 isolates commonly found in the human gut microbiome were obtained from Deutsche Sammlung 
von Mikroorganismen und Zellkulturen (DSMZ) and American Type Culture Collection (ATCC), and 
subcultured as previously described (Nayak et al., 2021). MTX (100 μg/ml) was added to cultures for 
72 hr, samples then spun down at 2000 rcf for 5–10 min at 4°C, and supernatant injected to HPLC (see 
HPLC method). MTX was dosed based on the predicted concentration of the drug in a human gastro-
intestinal tract, as previously described (Nayak et al., 2021). Drug depletion was defined as at least a 
50% decrease in MTX levels compared to control. SIMMER predicted enzymes’ presence or absence in 
the 42 isolates was determined by downloading genomes (Figure 8—source data 1) for all 42 isolates 
and conducting DIAMOND searches. Presence was defined as at least 97% global percent identity. 
Presence of AcrAB efflux machinery was determined by conducting DIAMOND searches for E. coli 
AcrA (P0AE06) and AcrB (P31224) against all 42 isolates, and reported in Figure 8—source data 1. 
For the phylogenetic tree, 16S rRNA gene sequences for the 42 organisms were downloaded from the 
Greengenes database (DeSantis et al., 2006) and aligned using MUSCLE (Edgar, 2004). Gaps occur-
ring in greater than 50% of sequences removed before creating a maximum likelihood phylogenetic 
tree (PhyML) with 100 bootstraps and the GTR substitution model (Guindon et al., 2010).

MTX HPLC method
HPLC assays were performed on an Agilent HPLC (1220 Infinity), and data collected with OpenLAB 
CDS (Agilent Technologies). Solvent A was 0.1% formic acid, and solvent B was 100% meth-
anol. Solvent B concentration was 10–30% from 0 to 1  min, 30–100% from 1 to 7  min, and then 
100–10% from 7 to 7.5 min. The flow rate was 0.6 ml/min. A C18 column (Kinetex 2.6  µM; 100  Å; 
15 cm × 0.46 cm; Phenomenex; 00F- 4462- E0) was used with a SecurityGuard ULTRA cartridge guard 
column (Phenomenex part number AJ0- 8768). The injection volume was 30 µl. At 310  nm, MTX reten-
tion time was 5.5 min (Figure 8—figure supplement 2). We compared the amount of MTX present in 
the bacterial supernatant compared to sterile and dimethyl sulfoxide (DMSO) controls to assess MTX 
metabolism.

Web tool creation
We used the python web framework Flask (https://flask.palletsprojects.com/en/2.1.x/) to make 
SIMMER available as a user- friendly website. The website accepts either a single query reaction or 
multiple query reactions via a file upload and provides the same outputs as the SIMMER command- 
line tool. The website also allows the user to download the outputs of interest. Keeping in mind the 
privacy and security of the data that a user might upload to the website, the website is designed to 
delete all uploaded data within 24 hr from the server. This will ensure security of the uploaded data.
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Data generated and analyzed during this study are provided in Figures 2–10 source data files, Table 
1 source data file, supplementary files, and at https://github.com/aebustion/SIMMER (copy archived 
at Bustion, 2023). Accession numbers of previously published datasets are provided in Materials and 
Methods section. SIMMER code can either be run at the SIMMER website (https://simmer.pollard. 
gladstone.org/) or downloaded directly from the above- linked GitHub.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Artacho, et al 2020 human gut microbiome 
predicts response to MTX 
treatment

https://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJNA682730

NCBI BioProject, 
PRJNA682730

Zimmermann, et al 2019 Drug metabolism by 28 
human gut communities

https://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJEB31790

NCBI BioProject, 
PRJEB31790

Zimmermann, et al 2019 Sequencing data 
for "Mapping drug 
metabolism by the human 
gut microbiome using 
personalized microbial 
communities"

https://www. ncbi. nlm. 
nih. gov/ bioproject/? 
term= PRJNA593062

NCBI BioProject, 
PRJNA593062
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