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The Pretreatment Gut Microbiome Is Associated With 
Lack of Response to Methotrexate in New-Onset 
Rheumatoid Arthritis
Alejandro Artacho,1 Sandrine Isaac,1 Renuka Nayak,2  Alejandra Flor-Duro,1 Margaret Alexander,2 Imhoi Koo,3 
Julia Manasson,4  Philip B. Smith,3 Pamela Rosenthal,4 Yamen Homsi,5 Percio Gulko,6 Javier Pons,1 
Leonor Puchades-Carrasco,7 Peter Izmirly,4 Andrew Patterson,3 Steven B. Abramson,4 Antonio Pineda-Lucena,8 
Peter J. Turnbaugh,9 Carles Ubeda,10 and Jose U. Scher4

Objective. Although oral methotrexate (MTX) remains the anchor drug for rheumatoid arthritis (RA), up to 50% of 
patients do not achieve a clinically adequate outcome. In addition, there is a lack of prognostic tools for treatment 
response prior to drug initiation. This study was undertaken to investigate whether interindividual differences in the 
human gut microbiome can aid in the prediction of MTX efficacy in new-onset RA.

Methods. We performed 16S ribosomal RNA gene and shotgun metagenomic sequencing on the baseline gut 
microbiomes of drug-naive patients with new-onset RA (n = 26). Results were validated in an additional independent 
cohort (n = 21). To gain insight into potential microbial mechanisms, we conducted ex vivo experiments coupled with 
metabolomics analysis to evaluate the association between microbiome-driven MTX depletion and clinical response.

Results. Our analysis revealed significant associations of the abundance of gut bacterial taxa and their genes 
with future clinical response (q < 0.05), including orthologs related to purine and MTX metabolism. Machine learning 
techniques were applied to the metagenomic data, resulting in a microbiome-based model that predicted lack of 
response to MTX in an independent group of patients. Finally, MTX levels remaining after ex vivo incubation with distal 
gut samples from pretreatment RA patients significantly correlated with the magnitude of future clinical response, 
suggesting a possible direct effect of the gut microbiome on MTX metabolism and treatment outcomes.

Conclusion. Taken together, these findings are the first step toward predicting lack of response to oral MTX in 
patients with new-onset RA and support the value of the gut microbiome as a possible prognostic tool and as a 
potential target in RA therapeutics.
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INTRODUCTION

Despite multiple advances in the understanding of rheu-
matoid arthritis (RA) pathogenesis and in the development of 
therapeutics (1), oral methotrexate (MTX) remains the mainstay 
of therapy (2,3). MTX is a dihydrofolate reductase inhibitor and 
is considered a disease-modifying drug since it ameliorates 
symptoms and prevents joint destruction. Importantly, only up 
to 50% of patients will have a clinically adequate response when 
the drug is administered as monotherapy (2,4). The reasons for 
this discrepancy in clinical outcomes are not clearly understood, 
although one possibility may relate to interindividual differences 
in the bioavailability of oral MTX, which is known to be highly vari-
able (range 20–80%) (5). This is of utmost relevance since MTX is 
well tolerated, safe, and has a significantly lower cost compared 
to newer biologic therapies (6), making it first-line therapy in RA 
worldwide (7,8).

Despite decades of study, the interindividual variation in 
MTX response cannot be accurately predicted by host biomark-
ers (9–14), and the determination of responder status requires a 
lengthy trial, creating a window for joint damage to accrue. More 
recently, several groups have characterized the dependence of 
immunomodulatory therapies on the gut microbiome and its util-
ity as a predictor of clinical response (15–20). Accordingly, it is 
possible that the bioavailability and/or subsequent response to 
MTX could at least be partially driven by differences in the micro-
bial species, genes, enzymes, and/or metabolites found within 
the gastrointestinal tracts of RA patients. The premise for 
this hypothesis is supported by prior work in rodents, where 
both germ-free housing and antibiotic depletion significantly 
decreased intestinal absorption and metabolism of MTX (21,22). 
However, our understanding of the role of the human gut micro-
biome in RA treatment remains limited (23). In this study, we 
sought to address these knowledge gaps by determining if the 
pretreatment gut microbiome is associated with prediction of 
drug efficacy and whether human bacterial communities could 
directly metabolize MTX.

PATIENTS AND METHODS

Patients. Consecutive patients from the New York Univer-
sity Langone Medical Center, Lutheran Hospital, Staten Island and 
Mount Sinai School of Medicine rheumatology clinics and offices 
were screened for RA. Eligible patients with active, new-onset RA 
were included in the study (see Supplementary Methods, avail
able on the Arthritis & Rheumatology website at http://onlin​elibr​ary.
wiley.com/doi/10.1002/art.41622/​abstract).

Study design. All patients with new-onset RA (n = 26 for the 
training cohort and n = 21 for the validation cohort) were recruited 
using established protocols (24). Clinical and demographic character-
istics of the training and validation cohorts are shown in Supplemen-
tary Tables 1 and 2, available on the Arthritis & Rheumatology website 
at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract). 
Biologic samples and metadata were obtained before treatment with 
MTX and folic acid and 1, 2, and 4 months after therapy initiation. A 
responder to MTX was defined a priori as any patient with new-onset 
RA with an improvement in the Disease Activity Score in 28 joints 
(DAS28) (25) of ≥1.8 by month 4 after initiation of MTX monotherapy. 
Biologic samples from 20 RA patients who subsequently either never 
initiated MTX or were prospectively prescribed other medications 
were analyzed as controls (see Supplementary Methods).

Microbiome sequencing and analysis. We performed 
16S ribosomal RNA (16S rRNA) and shotgun sequencing analysis 
as described in detail in the Supplementary Methods. The 16S rRNA 
sequencing led to the identification of each taxa, operational tax-
onomic unit (OTU), and ribosomal sequence variant (RSV) present 
in a given sample. Shotgun sequencing led to the identification of 
KEGG modules, pathways, and gene orthologs. Sequencing data 
generated during the study are available at the NCBI Sequence 
Read Archive (accession #PRJNA682730). Data include accession 
codes and unique alphanumeric identifiers associated with raw data.

Identification of a microbiome-based model to pre-
dict response to MTX. Features (i.e., OTUs, RSVs, and KEGG 
orthologs [KOs]) for model development were selected by applying 
the Boruta algorithm (26) to the samples from the training cohort 
(Supplementary Methods and https://github.com/scher​-lab). A ran-
dom forests model was fitted using the features identified, and the 
accuracy of the model was evaluated in an independent validation 
cohort of patients with new-onset RA (Supplementary Methods) 
and in a control cohort of RA patients who subsequently either never 
initiated MTX or were prospectively prescribed other medications.

Ex vivo incubation of fecal samples. Fecal samples 
were incubated ex vivo with MTX, and the remaining levels of MTX 
were measured by nuclear magnetic resonance (NMR) spectros-
copy or liquid chromatography mass spectroscopy (LC-MS) (see 
Supplementary Methods).

Statistical analysis. The DESeq2 algorithm and the false 
discovery rate were applied to identify differences in the abun-
dance of microbiome features, while Bray-Curtis distance-based 
permutational multivariate analysis of variance (PERMANOVA) 

$10,000 each) and from Sanofi (more than $10,000). No other disclosures 
relevant to this article were reported.

Address correspondence to Jose U. Scher, MD, 301 East 17th Street, 
Room 1611, New York, NY 10003 (email: jose.scher@nyulangone.org); or to 

Carles Ubeda, PhD, Avenida de Cataluña, 21, Valencia 46020, Spain (email: 
ubeda_carmor@gva.es).

Submitted for publication July 3, 2020; Revised: November 15, 2020; 
accepted in revised form December 2, 2020.

http://onlinelibrary.wiley.com/doi/10.1002/art.41622/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41622/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41622/abstract
https://github.com/scher-lab
mailto:jose.scher@nyulangone.org
mailto:ubeda_carmor@gva.es


PRETREATMENT GUT MICROBIOME AND RESPONSE TO MTX IN NEW-ONSET RA |      3

was used to detect overall differences in the gut microbiome (Sup-
plementary Methods). Spearman’s correlation test was used to 
detect associations between continuous variables using Graph-
Pad Prism version 6.0. P values less than 0.05 and q values less 
than 0.05 were considered significant.

RESULTS

Pretreatment gut microbial community structure 
differentiates clinical response to MTX. We first investi-
gated whether the pretreatment gut microbial community structure 
could differentiate clinical response to MTX in patients with new-
onset RA. We collected stool samples from a training cohort of 26 
patients with new-onset RA (Supplementary Figure 1 and Supple-
mentary Tables 1 and 2, available on the Arthritis & Rheumatology 

website at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​
abstract). All patients enrolled received oral MTX at standard-of-
care dosing (average 20 mg/week, range 15–25 mg). Fecal sam-
ples were obtained within 48 hours prior to treatment initiation. 
We then classified patients as either MTX responders (39% of the 
cohort) or MTX nonresponders (61% of the cohort) based on a 
stringent definition of clinical response (improvement in DAS28 of 
≥1.8 and no need for adding a biologic drug) at month 4 after 
therapy initiation (7).

Using 16S rRNA gene sequencing, we first analyzed 
differences in microbial diversity between MTX nonresponders 
(n = 16) and MTX responders (n = 10). Patients who responded 
to therapy had significantly lower microbial diversity at the OTU 
level (P < 0.05 by Wilcoxon’s 2-sided test) (Figure 1a), with a simi-
lar trend observed for richness (Figure 1a). A significant difference 

Figure 1.  Pretreatment gut microbial diversity and taxa in a training cohort of patients with new-onset rheumatoid arthritis (RA) who responded to 
methotrexate (MTX-R) and patients with new-onset RA who did not respond to MTX (MRX-NR). a, Diversity (Shannon index) and richness (number 
of operational taxonomic units [OTUs]) of pretreatment microbiota in responders and nonresponders to MTX. Bars show the mean ± SEM. Symbols 
represent individual patients (n = 10–16 per group). * = P < 0.05. NS = not significant. b, Principal components analysis (PcoA) of samples from 
responders and nonresponders to MTX based on their pretreatment microbiota composition at the OTU level, using Bray-Curtis distance. PC1 = 
principal component 1. c, Significant differences in gut microbial community structure between responders and nonresponders to MTX at the 
indicated taxonomic levels, determined by Bray-Curtis distance–based permutational multivariate analysis of variance (PERMANOVA). * = P < 0.05. 
d, Firmicutes:Bacteroidetes ratio in responders and nonresponders to MTX. * = P < 0.05 by Wilcoxon’s 2-tailed test. FC = fold change. e, Significantly 
different relative abundance (counts per 105) of OTUs in responders to MTX versus nonresponders to MTX (q < 0.05 by DESeq2). Only OTUs with a 
median abundance >0.01% in ≥1 group are shown. Significantly different low abundance OTUs (q < 0.05 by DESeq2) are shown in Supplementary 
Table 3, available on the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract. In d and e, data are 
shown as box plots. Boxes represent the 25th to 75th percentiles. Lines inside the boxes represent the median. Whiskers indicate maximum and 
minimum values. Symbols represent individual patients (n = 10–16 per group). UC = unclassified. ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001.
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in overall gut microbial community structure was also observed 
between groups based on abundance of OTUs and other tax-
onomic levels (principal components analysis based on Bray-
Curtis distance; P < 0.05 by PERMANOVA) (Figures 1b and c). 
Subsequently, we applied the DESeq2 algorithm to test for dif-
ferential abundance in bacterial groups that could be driving this 
separation. At the phylum level, we detected a higher abundance 
of Firmicutes and lower abundance of Bacteroidetes in nonre-
sponders (P < 0.05, q = 0.08) (Supplementary Figure 2, available 
on the Arthritis & Rheumatology website at http://onlin​elibr​ary.
wiley.com/doi/10.1002/art.41622/​abstract) and, consequently, a 
higher Firmicutes:Bacteroidetes ratio in nonresponders (P < 0.05 
by Wilcoxon’s 2-sided test) (Figure 1d). In addition, samples 
from nonresponders to MTX showed a higher abundance of the 
Euryarchaeota phylum (q < 0.05 by DESeq2) (Supplementary 
Figure 2), unclassified Clostridiales/Clostridiales incertae sedis 
XIII family, and Escherichia/Shigella genera (q < 0.05 by DESeq2) 
(Supplementary Figure 2). We also detected differences in 5 low 
abundance taxa (median abundance per group <0.01%) (Supple-
mentary Table 3, available on the Arthritis & Rheumatology website 
at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract).

Consistent with the lower Firmicutes:Bacteroidetes ratio in 
responders to MTX, we found that several OTUs from the Bac-
teroides and Prevotella genera (Bacteroidetes phylum) were 
significantly more abundant in this group (q < 0.05, by DESeq2) 
(Figure 1e), with a concomitant decrease in OTUs from the order 
Clostridiales and the genus Ruminococcus (Firmicutes phylum) 
(q < 0.0 by DESeq2) (Figure 1e). Differences in 14 additional low 
abundant OTUs were also detected between groups (Supple-
mentary Table 3). Analysis of RSVs revealed similar results (Sup-
plementary Figure 3 and Supplementary Table 3).

MTX nonresponders have consistent differences in 
gut microbial gene abundance relative to responders. 
Although we identified some differences in gut microbial com-
munity structure between patient groups, 16S rRNA sequencing 
can only approximate metabolic capacity, in particular for genes 
related to drug metabolism (27,28). We therefore performed shot-
gun sequencing to define the bacterial metagenome and gene 
abundance of the pretreatment gut microbiome in our training 
cohort. An average of 1.7 × 109 bp per sample were obtained 
after quality filtering (Supplementary Table 4, available on the 
Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/
doi/10.1002/art.41622/​abstract), which allowed us to functionally 
annotate gut microbial genes into a total of 6,356 KOs. Although 
the percentage of open-reading frames annotated using the KEGG 
database was similar between groups (mean ± SD 27.64 ± 0.01 
in responders versus 27.87 ± 0.01 in nonresponders; P = 0.78 
by 2-sided t-test), the metagenome from pretreatment fecal sam-
ples separated most MTX responders from MTX nonrespond-
ers (principal components analysis; P < 0.05 by PERMANOVA) 
(Figure 2a). Moreover, our analysis identified 7 microbial modules 

that differed significantly between groups (q < 0.05 by DESeq2) 
(Supplementary Figure 4 and Supplementary Table 5, available on 
the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41622/​abstract), indicating a major cluster-
ing by metabolic and biosynthetic potential.

At the microbial pathway level, 26 features were significantly 
increased in MTX nonresponders, including the MAPK signaling 
pathway (ko04016), DNA replication (ko03030/3032), fatty acid 
degradation (ko00071), and ABC transporters (ko02010) (Figure 2b 
and Supplementary Table 5) (q < 0.05 by DESeq2). In contrast, 
28 pathways were diminished in the MTX nonresponder group 
(Figure 2b), including those associated with lipopolysaccharide 
biosynthesis (ko01005) and either carbohydrate/vitamin metabo-
lism (e.g., fructose/mannose [ko00051] and thiamine [ko00730]) or 
biosynthetic pathways, most notably folate biosynthesis (ko00790).

In total, 462 KOs separated MTX nonresponders from MTX 
responders (q < 0.05 by DESeq2) (Figure 2c and Supplementary 
Table 5), with 86 of these orthologs showing at least a 2-fold dif-
ference between groups (Supplementary Table 5). Some of the 
top genes with higher effect sizes encode for bacterial structural 
proteins (e.g., peptidoglycan-binding protein) or enzymes (e.g., 
oxalate decarboxylase) (Figure 2c and Supplementary Figure 5, 
available on the Arthritis & Rheumatology website at http://onlin​e​
libr​ary.wiley.com/doi/10.1002/art.41622/​abstract).

In addition, we detected significant differences in the abun-
dance of multiple KOs encoding enzymes that may be indicative of 
potential changes in the bacterial metabolism of MTX, folate, and/or 
other molecules that have been linked, at least in mammalian cells, 
to an inadequate response to MTX (Figure 2d and Supplementary 
Table 5). A notable example was trmFO (K04094), an enzyme that 
leads to increased levels of tetrahydrofolate, which was found to 
be significantly higher in MTX nonresponders. Other differentiat-
ing KOs that may be of importance include adenine deaminase 
(K01486) and purine nucleoside phosphorylase (K03784), which 
were also increased in nonresponders. In contrast, several genes 
that encode for enzymes that can potentially lead to higher pro-
duction of aminoimidazole carboxamide ribonucleotide (AICAR; an 
intermediate molecule of downstream MTX effects), including hisH 
(K02501) and hisA (K01814), were decreased in nonresponders. 
Other genes known to be involved in the intracellular folate/MTX 
pathway (e.g., metF/MTHFR [K00297] and metH/MTR [K00548]) 
were also significantly lower in nonresponders.

Taken together, these results indicate that the gut microbi-
ome of patients with new-onset RA who respond favorably to 
MTX is distinct from that of nonresponders to MTX, prompting us 
to hypothesize that the pretreatment microbiome could be used 
to predict clinical nonresponse.

The pretreatment new-onset RA gut microbiome en
ables robust machine learning–based prediction of MTX 
response. Because the gut metagenomes of MTX nonresponders 
and MTX responders were significantly different prior to treatment 
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initiation, we sought to build a microbiome-based model that could 
predict clinical response to the drug. We first applied the Boruta 
algorithm (26) to our training cohort in order to identify metagen-
omic features relevant to the development of a predictive model, 
yielding a total of 38 Boruta-confirmed KOs (Figure 3a). Of those, 
and although most of them have no known implication in the 
folate/MTX pathways, the KO with the highest discriminative 
score (thiamine-phosphate diphosphorylase) is indeed involved 
in the metabolism of thiamine (a byproduct of which can inter-
fere with MTX transport), while 2 other confirmed KOs encode 
for enzymes that may be involved in MTX response (i.e., hisH and 
hisA).

All 38 Boruta-selected KOs were included as predictors in a 
random forest model that was fitted using data exclusively from 
our training cohort. We then tested the predictive capability of 
this model in a new validation cohort of 21 patients with new-onset 
RA (with demographic characteristics similar to those of the train-
ing cohort) (Supplementary Tables 1 and 2), which yielded a high 
discriminative performance (area under the curve [AUC] 0.84). This 
translated into 80% of the patients being correctly classified (83.3% 
as nonresponders and 78% as responders) (Figure 3b). Consistent 
with this predictive capacity, a significant positive correlation was 
detected between the observed clinical improvement at month 4 
and the probability of response provided by the model (rho = 0.601, 

Figure 2.  Differential bacterial pathways and gene orthologs in the pretreatment microbiomes in a training cohort of patients with new-onset 
RA who responded to MTX and patients with new-onset RA who did not respond to MTX. a, Principal components analysis of samples from 
responders and nonresponders to MTX based on the relative abundance of KEGG orthologs (KOs), using Bray-Curtis distance. Significant 
differences in gene family abundance were determined by PERMANOVA. b, Significantly different microbial pathways (q < 0.01 by DESeq2) 
identified in the pretreatment microbiomes of nonresponders and responders to MTX. The relative abundance (log2 fold change) is shown for 
each pathway. Other significant pathways (q < 0.05 by DESeq2) are shown in Supplementary Table 5, available on the Arthritis & Rheumatology 
website at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract. c, Heatmap showing 462 significantly different KOs in the gut 
microbiome of responders versus nonresponders to MTX (q < 0.05 by DESeq2). The KOs with the highest fold change difference for each 
group are indicated. Colors in the heatmap represent the KO abundance deviation from the median corrected by group size (see Patients and 
Methods). d, Relative abundance (in counts per million [cpm]) of pretreatment intestinal microbiome–derived KOs that significantly differed 
between responders and nonresponders to MTX and have previously been implicated in purine metabolism and/or MTX biotransformation 
(in either mammalian or bacterial cells). Data are shown as box plots. Boxes represent the 25th to 75th percentiles. Lines within the boxes 
represent the median. Whiskers indicate the maximum and minimum values. Symbols represent individual patients (n = 10–16 per group). ** = 
P < 0.01; *** = P < 0.001; **** = P < 0.0001. See Figure 1 for other definitions.
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P = 0.004 by Spearman’s rank correlation test) (Figure 3c). To study 
whether these findings could be rather reflective of microbial sur-
rogates of clinical variables, we evaluated the correlations of the 

probability of response with both the observed baseline disease 
activity and the disease activity after MTX treatment. We found 
only a modest correlation with the former (rho = 0.45, P = 0.039) 

Figure 3.  Pretreatment microbiota KEGG orthologs (KOs) as predictors of response to MTX treatment. a, KOs confirmed by the Boruta 
algorithm (n = 38) that discriminated between responders and nonresponders to MTX in a training cohort. Relative abundance (in counts per 
million [cpm]) (left) and median importance in a random forests model (right) are shown for each KO. In the left panel, data are shown as box 
plots. Boxes represent the 25th to 75th percentiles. Lines within the boxes represent the median. Whiskers indicate the maximum and minimum 
values. Symbols represent individual patients (n = 10–16 per group). b, Proportion of patients from a validation cohort who were correctly 
assigned to each group using a threshold of probability of response of 0.5 (those with a probability of response of >0.5 were considered 
responders; those with a probability of response of <0.5 were considered nonresponders). c, Correlation between actual (observed) response 
to MTX (based on change in Disease Activity Score in 28 joints [DAS28] at month 4 after treatment initiation) and predicted probability of 
response according to the metagenome-based model in the validation cohort (rho = 0.601; P < 0.05 by Spearman’s 2-sided rank correlation 
test). The blue line shows the mean linear regression; red lines indicate 95% confidence intervals. Symbols represent individual patients (n = 
21). d, Comparison of the predictive potential of different models. A random forest model was built using the Boruta-selected gene orthologs 
(metagenomic model), clinical-pharmacogenetic variables (see Supplementary Methods, available on the Arthritis & Rheumatology website at 
http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract), and a combination of both. The area under the curve (AUC) obtained with each 
model is shown. TPR = true-positive rate; FPR = false-positive rate (see Figure 1 for other definitions).
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and no correlation with the latter (rho = −0.29, P = 0.19). Further, 
we observed a correlation between baseline disease activity and 
change in DAS28 in this population of patients with new-onset 
RA with high disease activity prior to MTX treatment (rho = 0.34, 
P = 0.018). Taken together, these results suggest that the predictive 
capacity of the model is mostly related to the change in disease 
activity, although the possibility that a few gene orthologs may con-
comitantly behave as a proxy for systemic inflammation cannot be 
ruled out.

The predictive capacity of the model was maintained or even 
increased when the number of features included in the model 
were reduced to as few as 12 KOs, based on the importance 
score assigned by the Boruta algorithm (Supplementary Figure 6 
and Supplementary Table 6, available on the Arthritis & Rheu-
matology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/
art.41622/​abstract Methods). As expected, the predictive power 
was enhanced (89% of patients correctly classified; AUC 0.94) 
when considering only those patients with the highest probability 
score of belonging to either group (i.e., probabilities of response 
≤0.2 or ≥0.8). A similar prediction outcome was obtained when 
analyzing sequences from a different platform (i.e., MiSeq), fur-
ther validating the potential utility of our tool (Supplementary 
Figure 7, available on the Arthritis & Rheumatology website at 
http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract).

To expand on its clinical applicability, we tested the model 
in yet another group of RA patients (n = 20) who were either pre-
scribed different antirheumatic drugs (i.e., conventional synthetic 
disease-modifying antirheumatic drugs [DMARDs] or biologic 
agents) or were not started on any medications at all (Supple-
mentary Tables 2 and 7, available on the Arthritis & Rheumatology 
website at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​
abstract). In these patients, clinical response could not be pre-
dicted using the microbiome-based model that included 38 KOs 
(i.e., only 50% of the patients were correctly assigned to their 
respective group), suggesting that the potential clinical utility of 
the model is restricted to RA patients who are both drug-naive 
and exposed directly to MTX, but not to other drugs.

We also applied the Boruta algorithm to the OTU-level data 
set (Supplementary Figure 8, available on the Arthritis & Rheu-
matology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/
art.41622/​abstract) and confirmed 13 features with predictive 
potential. However, a model based on these 13 OTUs did not sat-
isfactorily classify patients from the validation cohort (AUC 0.63) 
(Supplementary Figures 8A–D, available on the Arthritis & Rheu-
matology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/
art.41622/​abstract). A similar result was obtained when using 
RSV data (AUC 0.72) (Supplementary Figures 8E–H, available on 
the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41622/​abstract).

Although previous studies have suggested that clinical-
pharmacogenetic variables at baseline can also predict response 
to MTX therapy (29), we were not able to validate those findings 

in our new-onset RA cohort (Table 1). In order to compare the 
potential prediction capability of metagenomic variables (i.e., gene 
orthologs, KOs) to that of clinical-pharmacogenetic variables, 
the Boruta algorithm was applied after combining both sets of 
features. Notably, the Boruta algorithm only selected gene ort-
hologs as predictors (results not shown). We then built a random 
forest model containing exclusively the clinical-pharmacogenetic 
features, which failed to predict response to therapy (AUC 0.6) 
(Figure 3d). Moreover, when clinical-pharmacogenetic variables 
were added to the random forest model based on gene orthologs, 
the prediction potential did not differ from the one obtained with 
a model containing only metagenomic features (AUC 0.84) 
(Figure 3d). Taken together, these results indicate that the model 
based on microbiome features can determine response to MTX, 
while the clinical-pharmacogenetic features do not add to its pre-
dictive potential.

Gut bacteria derived from MTX nonresponders dif-
ferentially deplete MTX ex vivo, and remaining drug lev-
els correlate with decreased clinical response. In order to 
gain further mechanistic insights into whether the gut microbiome 
of patients with new-onset RA may directly mediate differences in 
clinical response by affecting MTX metabolism, we performed ex 
vivo studies using 2 independent metabolomic platforms.

We first incubated human stool samples from 22 patients 
with new-onset RA (n = 9 MTX responders and n = 13 MTX non-
responders) with MTX (100 μg/ml, 220 μM) ex vivo for 72 hours 
(see Patients and Methods). MTX and bacteria-produced down-
stream metabolites were measured in the supernatant using NMR 
spectroscopy. A total of 28 NMR signals (variable-size regions) were 
integrated in the NMR spectra (Supplementary Table 8, available 
on the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41622/​abstract). Subsequently, orthogonal 
partial least squares (OPLS) analyses were performed to minimize 
the potential contribution of variability between samples and to facil-
itate the identification of the NMR signals most relevant in the sepa-
ration between the groups, as previously described (30).

Among the NMR signals integrated in the spectra, 10 regions 
were found to be relevant (variable importance on projection 
[VIP] value > 1) when comparing the MTX responders and MTX 

Table 1.  Prediction power of the clinical-pharmacogenetic and 
metagenomic-based models for predicting response to MTX in 
patients with new-onset RA in our validation cohort*

Clinical-
pharmacogenetic 

model
Metagenomic-
based model

Patients classified as 
MTX nonresponders 
or MTX responders

48.9 100

True-negative rate 69 83.3
True-positive rate 0 78

* Values are the percent. MTX = methotrexate; RA = rheumatoid 
arthritis. 
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nonresponders (percentage of variability described in the first 
component R2 [Y] = 0.664; predictive value Q2 [Y] = 0.35) 
(Figure 4a), and 10 of them were found to be relevant (VIP 
value > 1) in the OPLS model when DAS28 was used as a 
continuous discriminant variable (R2 [Y] = 0.73, Q2 [Y] = 0.386) 
(Figure 4b and Supplementary Table 9, available on the Arthri-
tis & Rheumatology website at http://onlin​elibr​ary.wiley.com/
doi/10.1002/art.41622/​abstract). We then analyzed changes in 
the levels of those metabolites corresponding to signals with 
a VIP value >1 from the OPLS model using DAS28 as a con-
tinuous discriminant variable (the best-fitting model as deter-
mined by the R2 and Q2 values). This analysis revealed that 2 
of the features found to be relevant for discriminating between 
samples were compatible with MTX NMR signals (Supplemen-
tary Table 9). Higher intensities of these MTX signals in the 
supernatant were positively correlated with response to treat-
ment (greater change in DAS28 4 months after treatment initi-
ation) (rho = 0.619, P = 0.002 by Spearman’s rank correlation) 
(Figure 4c).

We next validated the NMR-based results using targeted 
LC-MS. This analysis facilitated a more specific measurement of 
the MTX concentration available upon incubation with different 
fecal microbiomes. Pretreatment samples from 30 patients with 
new-onset RA were incubated ex vivo with MTX (100 μg/ml) for 
48 hours. Supernatants were taken at 0, 16, 24, and 48 hours 
prior to LC-MS analysis, followed by quantification of MTX con-
centration at each time point for each sample. We first analyzed 
the ability of fecal microbiomes to metabolize MTX ex vivo, and 
found, as expected, a high interindividual variability (Figure 4d). 
While the microbiome of some patients was able to rapidly reduce 
the levels of MTX, the concentration of MTX was not modified in 
others (percent conversion ranging from 0 to 100). The samples 
that diminished MTX levels faster were mostly from MTX nonre-
sponders (71% of nonresponder samples showed >50% reduc-
tion in MTX levels by 48 hours), while those samples that did not 
substantially alter drug quantity were mostly from MTX respond-
ers (56% of responder samples showed <50% MTX reduction 
at 48 hours) (Figure 4e). We next applied linear regression on 

Figure 4.  Differential ex vivo depletion of MTX by gut microbiomes from patients with new-onset RA, and correlation between remaining drug 
concentrations and future clinical response. Fecal samples from responders and nonresponders to MTX were incubated with MTX (100 μg/ml) 
at a temperature of 37°C under anaerobic conditions for 72 hours (a–c) or 48 hours (d–f). Abundance of MTX was measured in the supernatant 
using nuclear magnetic resonance (NMR) spectroscopy (a–c) or liquid chromatography mass spectroscopy (LC-MS) (d–f). a, Clustering of 
samples from nonresponders to MTX (red; n = 13) separately from samples from responders to MTX (blue; n = 9), determined by orthogonal 
partial least squares (OPLS) analysis based on the integration of 28 signals identified on the NMR spectra. b, OPLS model of the correlation of 
change in the Disease Activity Score in 28 joints (DAS28) with change in NMR signals. c, Significant correlation of the mean abundance (spectral 
intensity in AU) of the 2 peaks corresponding to MTX (B8_6200 and B1_9825) with future clinical response (DAS28) in patients with new-onset 
RA (rho = 0.619, P < 0.05 by Spearman’s 2-sided rank correlation test). The blue line shows the mean linear regression; shading indicates 95% 
confidence intervals. d, Levels of MTX at the indicated time points after incubation with fecal samples from RA patients (n = 30). Most patients 
whose fecal microbiota rapidly depleted MTX did not have an adequate response to treatment. e, Proportion of nonresponders and responders 
to MTX who were fast metabolizers. f, Significant correlation of MTX elimination rate (slope of a linear fit to a semi-log plot of MTX concentration 
versus time) with future clinical response (DAS28 score) in patients with new-onset RA (rho = −0.37, P = 0.04 by Spearman’s 1-sided rank 
correlation test). See Figure 1 for other definitions.
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log-transformed MTX concentrations to determine the elimination 
rate of MTX for each individual sample and observed that the elim-
ination rate was significantly and negatively associated with future, 
observed clinical response (rho = –0.37, P = 0.04 by Spearman’s 
1-sided correlation test) (Figure 4f).

Taken together, these data provide a plausible mechanis-
tic explanation for the association between the pretreatment 
gut microbiome and drug response, where patients’ communities 
enriched for gut bacteria capable of efficiently metabolizing and/or 
depleting MTX are associated with worsened clinical outcomes.

DISCUSSION

Although several efficacious therapies have recently been 
developed, the field of rheumatology lacks tools to help clinicians 
and their patients decide early on which drugs are most likely to be 
beneficial. In RA, prior models based on clinical-pharmacogenetic 
features could not be generalized or validated to predict MTX out-
comes (31–33). Consequently, the current state of clinical care for 
new-onset RA is to initiate MTX regardless (34), turning the thera-
peutic decision-making process effectively aleatory. This approach 
is most problematic for those patients who fail to respond within 
the early therapeutic window of opportunity (35–39).

Using a combination of 16S rRNA gene and metagen-
ome sequencing, we report for the first time that the pretreat-
ment microbiome can differentiate response to oral MTX in a 
cohort of patients with new-onset RA. We found that overall bac-
terial diversity is distinct between patients who respond to MTX 
and those who do not. Although we found differences at higher 
taxonomic levels, these differences could not be explained by 
specific relative expansion/contraction at lower taxonomic hierar-
chies (i.e., OTUs and RSVs) (Supplementary Figure 9, available on 
the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41622/​abstract), suggesting that group(s) 
of microbes or bacterial functions, rather than dominant spe-
cies, may be associated with or implicated in clinical response. 
Consistent with this finding, metagenomic sequencing enabled 
improved predictions of clinical response. Notably, based on the 
abundance of 38 KOs, we were able to predict lack of response 
to MTX in the majority of patients from an independent, valida-
tion cohort. This indicates that our metagenome-based classifier 
constitutes a potentially valuable tool for decision-making in newly 
diagnosed RA (Figure 5).

To our knowledge, only one other group has used micro-
biome features to predict MTX response in RA (23). However, 
that study focused primarily on the oral microbiome as a pre-
dictor and mostly on RA patients with longstanding, estab-
lished, treated disease, who are known to have a markedly 
distinct microbiome from patients with new-onset RA (40). In 
addition, predictors of response to MTX in the prior study were 
based on the abundance of metagenomic species rather than 
specific gene orthologs.

Nevertheless, we note limitations to our model, which may 
prevent its immediate applicability. First, although our cohorts were 
heterogeneous in nature (i.e., patients derived from various ethnic 
backgrounds and clinics), they were limited in number and, there-
fore, the tool should still be tested in expanded, distinct RA popu-
lations. Second, we chose a change in DAS28 of 1.8 to enhance 
the stringency of our outcome of response. In doing so, however, 
this approach led us to consider some patients to be MTX non-
responders even though they had a probability of response very 
close to that of MTX responders (i.e., near 0.5). This result is not 
unexpected, since the threshold used to classify response was 
high (i.e., a change in DAS28 of 1.2–1.8 is still considered mod-
erate to good response in practice) and because of the dynamic 
nature of DAS28 as a continuous measurement. Nevertheless, 
the predictive capacity of this metagenomic model is on par with 
those observed in other chronic diseases and cancer (16,41), 
and outperforms both a previous clinical pharmacogenetic-based 
approach in RA (29) (Table 1) and the current clinical practice in 
early disease (Figure 5). Although prediction could not be enhanced 
by incorporating clinical-pharmacogenetic features (Figure 3d), it 
is possible that the discriminating power of the model may be 
increased by adding other previously studied predictors of MTX 
efficacy (42). Third, our study focused exclusively on oral MTX 
and could not address how microbiome features associate with 
response to parenteral MTX. Although of interest, the clinical 
relevance of such an approach may be limited since: a) MTX 
undergoes enterohepatic circulation, and b) the overall use of 
subcutaneous MTX, even when more effective, is exceedingly lim-
ited (43). In addition, and based on our results, our model may 
not be applicable to other DMARDs/oral small molecules or 
other biologic therapies (Supplementary Table 7, available on the 
Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/
doi/10.1002/art.41622/​abstract). This finding is consistent with 
work from other groups suggesting that specific models may be 
required for different medications (41,44).

Importantly, using shotgun sequencing, we identified microbial-
derived gene orthologs in pretreatment samples from patients 
with new-onset RA, which enabled us to study microbiome-based 
features that characterize response to MTX. Many of the pathways 
and genes that were significantly distinct between groups were 
linked to nonspecific bacterial structure and physiology. How-
ever, other gene orthologs were related to known MTX metabolic 
pathways, at least in mammalian cells. For example, the micro-
biome of MTX nonresponders showed increased abundance of 
genes encoding for adenine deaminase and purine-nucleoside 
phosphorylase. These enzymes are involved in the purine metab-
olism pathway and catalyze reactions leading to the production of 
hypoxanthine, a purine derivative known to rescue cells from MTX 
cytotoxicity (45,46). This could potentially allow for a higher incor-
poration of MTX by intestinal bacteria and further reduce drug bio-
availability. Conversely, a relative decrease in genes that encode 
for enzymes implicated in the accumulation of AICAR (i.e., hisH 
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and hisA) was detected in MTX nonresponders. This finding is rel-
evant because MTX exerts many of its functions through the accu-
mulation of (mammalian) intracellular AICAR, which in turn leads to 
the release of extracellular adenosine, which modulates many of 
the immune-mediated effects of MTX. A second series of genes 
encoding for enzymes involved in intracellular folate/MTX dis-
position, at least in humans (47), were also significantly lower in 
the microbiome of MTX nonresponders, including metH and metF.

Overall, many more KOs differentiate MTX nonresponders 
from MTX responders than OTUs and RSVs. It is quite possi-
ble that this relates to the established functional redundancy 
between bacterial species and strains (48,49). In the case of RA, 
it is conceivable that comparable metagenomes implicated in 
MTX transformation could functionally converge through several 
combinations of distinct taxa in any given patient. In fact, many 
KOs related to purine metabolism and/or MTX biotransformation 

pathways that significantly differentiated MTX nonresponders 
from responders were imputed to different taxa (Supplementary 
Figure 10, available on the Arthritis & Rheumatology website at 
http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41622/​abstract). 
Taken together, our results further underscore the importance 
of gut metagenomic characterization for studies that aim to 
develop a functional view of drug metabolism (18).

While the metagenomic sequencing data suggest that 
human gut bacteria possess the metabolic potential to act on 
MTX, we demonstrated experimentally that MTX is depleted by 
human gut bacteria ex vivo. Although previous studies in mice 
suggested that the gut microbiome is necessary for the bio-
transformation of MTX (21,22), they failed to demonstrate that 
human gut bacteria are capable of directly metabolizing MTX 
(50). Using 2 independent analytical platforms, our data show 
for the first time that human gut microbiota derived from patients 

Figure 5.  Illustration showing the proportions of patients with rheumatoid arthritis (RA) who would benefit from our microbiome-based model. 
Left, Percentage of patients with new-onset RA (based on our cohort) with observed poor (red) or good (dark blue) response to methotrexate 
(MTX) therapy at 4 months. Right, Visual representation of how treatment decision-making could potentially be improved using our microbiome-
based model of treatment response. Five of 6 patients with new-onset RA (light blue) predisposed to not respond adequately to MTX would 
have benefited from the model (i.e., nonresponders to MTX would have been correctly classified as such and could have been treated earlier 
with alternative, more efficacious therapies). Similarly, all of those patients with new-onset RA predisposed to respond to MTX would have been 
treated adequately with either MTX (75%; dark blue) or erroneously, but still adequately, with alternative, efficacious therapies (25%; gray). This 
benefit would have been at the expense of 1 of 10 patients with new-onset RA who our model predicts would be responders to MTX when they 
are actually observed nonresponders (red).
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with new-onset RA differentially deplete MTX ex vivo. We fur-
ther found that, when incubated with fecal samples, MTX lev-
els measured in the supernatant correlate with future clinical 
response. Although a comparison between the MTX depletion 
rate and the probability of response given by the metagenome-
based model did not show a significant correlation (P > 0.05), 
this may reflect the fact that most gene orthologs included in 
the model do not seem to have a direct role in MTX deple-
tion (Figure 3a). One possibility is that these KOs could be 
considered solely as biomarkers/predictors of MTX response. 
Another complementary explanation is that they could be influ-
encing MTX response but independently of drug metabolism 
(e.g., priming the immune response to enhance systemic drug 
activity). Intriguingly, however, abundance of some KOs whose 
function may involve reduction in MTX levels (i.e., trmFO and 
deoD) (Figure 2d) was in fact significantly correlated with MTX 
depletion ex vivo (P < 0.05) (Supplementary Figure 11, avail-
able on the Arthritis & Rheumatology website at http://onlin​e​
libr​ary.wiley.com/doi/10.1002/art.41622/​abstract), suggesting a 
potential direct effect of the microbiome on MTX metabolism. 
Future studies should be performed in order to confirm whether 
the microbiome can directly metabolize MTX in vivo, prime the 
immune system to enhance response, or both.

In summary, we have characterized, for the first time, the 
potential clinical value of the pretreatment microbiome as a 
predictor of early response to MTX in drug-naive patients with 
new-onset RA. Our work suggests that the intestinal metage-
nome could be exploited in the development of biomarkers of 
response, either by high-throughput sequencing or through sim-
plified (e.g., polymerase chain reaction–based) precision medicine 
approaches. Finally, our results open the possibility of rationally 
designing microbiome-modulating strategies to improve oral 
absorption of MTX and its downstream immune effects, inform 
clinical decision-making, or both.
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